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The nature of time series data

The main objective of time series analysis is to develop
mathematical models that provide plausible descriptions for
the sample data.

There are two basic methodological approaches to time series
modeling:

1 The time domain approach

2 The frequency domain approach
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The nature of time series data

On the other hand, the frequency-domain approach
assumes that the main features of interest in the time series
analysis are related to peri odic or systematic sinusoidal
variations that are naturally found in the bulk of the data.

These periodic variations are often caused by intervening
biological, physical, or environmental phenomena. The study
of periodicity extends to economics and the social sciences,
where one may be interested in annual periodicities in series
such as monthly unemployment or monthly birth rates.

In spectral analysis, the participation of the various types of
periodic variation in a time series is carried out by separately
evaluating the variance associated with each type of
periodicity.
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Example 1: Climate change

Our first example of a time series is the temperature of the
earth.
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Example 1: Climate change

We observe an apparent upward trend in the series during the
latter part of the 20th century, which has been used as an
argument for the global warming hypothesis. Note also the
rather pronounced upward trend around 1970. The question
of interest to global warming proponents and opponents is
whether the overall trend is natural, or whether it is
human-caused.

Marcelo Villena, PhD Stationary Variables



The nature of time series data
Statistical time series modeling

Time series decomposition
Dependency measures

Stationarity
Multiple linear regression in time series models

References

Example 1: Climate change

R Code
rm(list=ls())
mydata < −read.csv (“/Users/marcelovillena/Desktop/gtemp.csv”,
header = TRUE, stringsAsFactors = FALSE) plot(mydata,
type=“o”, ylab=“Global Temperature Deviations”)
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Example 2: Financial time series

In finance it is always preferable to work with asset returns,
rather than directly using the asset price. There are two ways
to convert price into returns:

Rt =
pt � pt�1

pt�1
⇤ 100

Rt = ln

✓
pt
pt�1

◆
⇤ 100

where, Rt denotes the return to time t, pt denotes the price of
the asset at the time t, and ln denotes the natural logarithm.
In this formulation we ignore dividends, or assume that the
price series have already been adjusted for them.
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Example 2: Financial time series

Log-returns have the desirable property of being interpreted as
continuously compounded returns. In addition, they can be
simply summed, so as to obtain returns over longer periods:

r1 = ln p1
p0

= lnp1 � lnp0

r2 = ln p2
p1

= lnp2 � lnp1

r3 = ln p3
p2

= lnp3 � lnp2

r4 = ln p4
p3

= lnp4 � lnp3

r5 = ln p5
p4

= lnp5 � lnp4

r1 + r2 + r3 + r4 + r5 = lnp5 � lnp0 = ln p5
p0
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Example 2: Financial time series

As a second example, we will calculate the returns of the New York
Stock Exchange,´ındice ”S&P 500”, extracting daily data since the
year 2000, from the site: https://finance.yahoo.com/

R Code
rm(list=ls())
mydata < − read.csv (“/Users/marcelovillena/Desktop/sp.csv”,
header = TRUE, stringsAsFactors = FALSE)
precio < − mydata$”Adj.Close”
plot.ts(precio, type=”o”, ylab=“New York Stock Exchange Price”)
lnprecio < − log10(precio)
Dlnprecio < − di↵(lnprecio,1)
plot.ts(Dlnprecio, type=“o”, ylab=“New York Stock Exchange
Return”)
summary (lnprecio ) ; summary (Dlnprecio )Marcelo Villena, PhD Stationary Variables
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Example 2: Financial time series

New York Stock Exchange Index
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Example 2: Financial time series

New York Stock Exchange Index Return
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Example 2: Financial time series

Prices are apparently not normal, apparently they are
log-normal.
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Example 2: Financial time series

R Code
h < � hist(Dlnprecio,breaks=15)
xhist < � c(min(h$breaks),h$breaks)
yhist < � c(0,h$density,0)
xfit < � seq(min(Dlnprecio),max(Dlnprecio),length=40)
yfit < � dnorm(xfit,mean=mean(Dlnprecio),sd=sd(Dlnprecio))
plot(xhist,yhist,type=”s”,ylim=c(0,max(yhist,yfit)), main=“Normal
pdf and histogram”)
lines(xfit,yfit, col=“red”)
shapiro.test(Dlnprecio)
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Example 2: Financial time series

Price returns do appear normal, which is a desirable property
for statistical analysis.
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Example 2: Financial time series
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Shapiro-Wilk normality test data: Dlnprecio W = 0.90927,
p-value < 2.2e-16.
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Statistical time series modeling

In order to model the data, which apparently fluctuate
randomly over time, we assume that a time series is defined as
a collection of random variables.
For example, we can model a time series as a sequence of
random variables, x1, x2, x3, ..., where the random variable x1
denotes the value taken by the series at the first time point,
the variable x2 denotes the value for the second time period,
and so on.
In general, a collection of random variables, {xt}, indexed by t
is known as a stochastic process. In this text, t will be
typically discrete and vary over the integers
t = 0,±1,±2, , ...., or some subset of the integers. The values
observed in a stochastic process are known as the realization
of the stochastic process.
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White Noise

A widely used time series is that represented by a collection of
uncorrelated random variables, ✏t , with average 0 and finite
variance �2

✏ . Time series generated from uncorrelated variables
are used for example to model noise in engineering
applications, where it is called white noise. We will sometimes
denote this process as ✏t⇠✏n(0,�2

✏ ). The designation ”white”
originates from the analogy with white light and indicates that
all possible period oscillations are present with the same
strength.
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White Noise

Occasionally, we will also require that the noise be
independent and identically distributed (iid) random variables
with mean 0 and variance �2

✏ . Distinguish this case by saying
independent white noise, or by writing ✏t ⇠ iid(0,�2

✏ ).

Another particularly useful white noise series is Gaussian white
noise, in which the wt are independent normal random
variables, with mean 0 and variance �2

✏ ; or more succinctly,
✏t ⇠ iid N(0,�2

✏ ).

The figure below shows a collection of 500 of these random
variables, with �2

✏ = 1, drawn in the order in which they were
drawn.
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White Noise

R Code
set.seed(154)
w = rnorm(200,0,1)
plot.ts(w, ylim=c(-3,3), main=”White Noise”)
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Random Walk

A simple example for modeling a trending (non-stationary)
stochastic time series is a Random Walk with drift:

xt = � + xt�1 + ✏t

For t = 1, 2, ..., with an initial conditionl x0 = 0, and where ✏t
is white noise. The constant � is referred to as drift, and when
� = 0, is simply called a random walk. The term random walk
derives from the fact that, when � = 0, the value of the time
series over time t, is the value of the series over time t� 1 The
movement will be completely random and determined by ✏t .
Note that we can rewrite the above equation as a cumulative
sum of the white noise variables. That is:

xt = �t +
tX

j=1

✏t
Marcelo Villena, PhD Stationary Variables



The nature of time series data
Statistical time series modeling

Time series decomposition
Dependency measures

Stationarity
Multiple linear regression in time series models

References

Random Walk

R Code
set.seed(154)
w = rnorm(200,0,1)
x = cumsum(w)
wd = w + 0.2
xd = cumsum(wd)
plot.ts(xd, ylim=c(-5,55), main=“random walk”)
lines(x)
lines(0.2*(1:200), lty=“dashed”)
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Random Walk

random walk
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Random walk, �✏ = 1, with drift � = 0.2 (upper jagged line),
without drift, � = 0 (lower jagged line), and a straight line with
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Moving Average

We could replace the series of white noise ✏t by a moving
average that smooths the series. For example, consider
replacing ✏t by an average of its current value and its
immediate neighbors in the past and future. In other words:

vt = 1/3(✏t�1 + ✏t + ✏t+1)

As we will see in the following example, moving averages
produce a smoother version than the original series, reflecting
the fact that slower oscillations become more evident, and
some of the faster oscillations are eliminated.
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Moving Average

R Code
w = rnorm(500,0,1)
v = filter(w, sides=2, rep(1/3,3)) par(mfrow=c(2,1))
plot.ts(w, main=“white noise”)
plot.ts(v, main=“moving average”)
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Moving Average
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Autoregressions

Suppose again that we consider the white noise series wt as
input, and calculate the output using a second order equation,
i.e:

xt = xt�1 � 0.9xt�2 + ✏t

This equation represents a regression or prediction of the
current value xt of a time series as a function of the two
previous values of the series, which is why we use the name
autoregression.
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Autoregressions

R Code
w = rnorm(550,0,1)
x = filter(w, filter=c(1,-.9), method=“recursive”)[-(1:50)]
plot.ts(x, main=“autoregression”)
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Autoregressions
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Time series decomposition

Time series are usually decomposed into:

1 A trend Tt .

2 A seasonal component St .

3 An irregular element It .

For example

Tt = 2 + 0.1t;

St = 6.5cos(⇡/60)

and

It ⇠ N(µ = 0,�2 = 0.5).;
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Time series decomposition

R Code
rm(list=ls())
t = 2 + 0.1 ⇤ 1 : 500
s = 6.5 ⇤ cos(pi ⇤ 1 : 500/90)
set.seed(154)
i = rnorm(500, 0, 5)
plot.ts(s + t + i)
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Time series decomposition
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Time series decomposition

In general, time series can contain one or a combination of all
the above elements, either additively or multiplicatively:

xt = Tt + St + It

xt = Tt ⇤ St ⇤ It
The first specification is characterized by having each
component independently, which makes it possible to
decompose the series into a sum of the three factors.

The second specification, on the other hand, arises when the
trend (Tt), seasonality (St), and irregularity (It) are
dependent on each other.
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Time series decomposition

In general, the trend changes the mean of the series, while the
seasonal component has a pattern that repeats, for example
on a monthly or quarterly basis. The irregular component, in
spite of not having a well-defined pattern, can be forecast; in
fact, forecasters use correlations with the irregular component
to make their forecasts. In longer periods, however, the
irregular component exhibits a tendency to revert to zero.

Time series forecasting then attempts to predict each of these
components individually. As we have seen, the global time
series forecast groups each of these components in an additive
or multiplicative way.
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Trend Decomposition - Hodrick -Prescott Filter

In economics, the Hodrick-Prescott (HP) filter allows to
separate the trend and cyclic components for xt .
This method consists of obtaining a smoothed series St from
the original xt , by means of a solution to the optimization
problem suggested in the following equation. Once solved, it
allows to estimate both the cycle and the trend of the series.

min
nX

t=1

(xt � St)
2 + �

n�1X

t=2

[(St+1 � St)� (St � St�1)]
2

The suggested values for � depend on the periodicity of xt ,
and are: 14400 (monthly), 1600 (quarterly) and 100 (yearly).
On the other hand, once the cyclic component (xt � St) is
obtained from the HP filter, it can be interpreted as the gap
between its actual value xt and potential St
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Seasonal component decomposition
Di↵erence Transformations

Di↵erence transformations are used to capture the seasonal
component of the series:
A first di↵erence is defined as:

4xt = (xt � xt�1)

Logically, the second di↵erence is defined as:

42xt = (xt � xt�1)� (xt�1 � xt�2)

Previously we saw that the first di↵erence of the logarithm,
could be interpreted as the percentage change of the variable,
achieving the symmetry of the stock price.
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Seasonal component decomposition
Dummy Variables

A dummy variable, D, is a binary variable that takes the following
form:

D=1 if the observation has specific characteristics.

D=0 if it does not have them.

For example:
xt = �0 + �1zt + �2D + �3Dzt

D = 1 => xt = (�0 + �2) + (�1 + �3)zt

D = 0 => xt = �0 + �1zt

Dummy variables can be used to change the slope and/or intercept
in a linear model, which allows capturing seasonality in the series,
for example with dummy variables by quarter or season.

Marcelo Villena, PhD Stationary Variables



The nature of time series data
Statistical time series modeling

Time series decomposition
Dependency measures

Stationarity
Multiple linear regression in time series models

References

Dependency measures

As we saw earlier, a time series can be viewed as a collection
of n random variables at arbitrary integer time points t1, t2, tn,
for any positive integer there is a joint distribution function,
evaluated as the probability that the values of the series are
jointly less than n constants, c1, c2, · · · , cn, i.e.:
F (c1, c2, · · · , cn) = P(xt1 , c1, xt2  c2, · · · xtn  cn)
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Dependency measures

Unfortunately, the multinomial distribution function cannot
usually be written easily unless the variables are jointly
normal, in which case the joint density has the form:

f (x) = (2⇡)�2/n | � |�1/2 exp{�1/2(x� µ)0��1 (x� µ)}

where | · | indicates determinant and � the covariance matrix.

Although the joint distribution function allows the data to be
fully described, its manipulation is very complex, and its
graphical display impossible.
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Dependency measures

The marginal distribution functions:

Ft(x) = P{xt  x}

or the corresponding marginal density function.

ft(x) =
@Ft(x)

@x

When they exist, they provide valuable information for
examining the marginal behavior of the series.
If xt is Gaussian with mean µt y varianza �2

t , xt ⇠ N(µt ,�2
t ),

marginal density is given by:

ft(x) =
1

�t
p
2⇡

exp(� 1

2�2
t
(x� µt)

2)
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Dependency measures

The mean function, known in statistics as the first central
moment, is defined as:

Definition

µxt = E (xt) =

Z +1

�1
xft(x)dx

E denotes the expected value operator.
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Dependency measures

The autocovariance function, known in statistics as the
second central moment, is defined as:

Definition

�x(s, t) = cov(xs , xt) = E [(xs � µs)(xt � µt)]

In this case, �x(s, t) = �x(t, s) for all points of s and t. If
�(s, t) = 0 we can ensure that xs and xt are not linearly
related. On the other hand, if xs and xt are besides bivariate
normal, we can assure that they are independent.
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It is clear that if s = t, the autocovariance is reduced to
variance

Definition

�x(t, t) = E [(xt � µt)
2] = var(xt)
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Dependency measures

The Autocorrelation Function, denoted by ACF, measures
the linear predictability of the series in time t. That is, we
predict xt , using only the value xs . Assuming that both series
have finite variances, we have the following definition:

Definition

⇢(s, t) =
�(s, t)p

�(s, s)�(t, t)

It can be easily shown that �1  ⇢(s, t)  1. If we can
predict xt perfectly from xs through a linear relationship,
xt = �0 + �1xs , then the correlation will be +1 when �1 > 0 ,
and �1 when �1 < 0 .
Thus, we have an approximate measure of the ability to
predict the series at time t from the value at time s.Marcelo Villena, PhD Stationary Variables
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Dependency measures

The cross-covariance function between two series, xt e yt , is
given by:

Definition

�xy (s, t) = cov(xs , yt) = E [(xs � µxs)(yt � µyt)].

The cross-correlation function (CCF) is given by:

Definition

⇢xy (s, t) =
�xy (s, t)p

�x(s, s)�y (t, t)
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Dependency measures

We can easily extend the above formulations to the case of
two-series measures, e.g., xt1, xt2, · · · , xtr , i.e., multivariate
time series with r components.

In this case, the case of cross-covariance of the extension is:

�xy (j , k) = cov(xsj , ysk) = E [(xs � µxs)(ytj � µytk )].
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Stationarity

Definition

A time series is strictly stationary if the probabilistic behavior of
each set of values {xt1 , xt2 , ..., xtk} eis identical to that of the same
set displaced in time, i.e. {xt1+h, xt2+h, ..., xtk+h}.

In other words:

P(xt1 , c1, · · · xtk  ck) = P(xt1 + h, c1 · · · xtk+h  ck)

for all k = 1, 2, ..., all periods t1, t2, ..., tk , all numbers c1, c2, ..., ck ,
and all time shifts h = 0,±1,±2, ....
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Stationarity

If a time series is strictly stationary, then all multivariate
distribution functions for subsets of variables must be equal to
their counterparts in the shifted set. For example, when k = 1:

P{xs  c} = P{xt  c}

for any point in time s y t.

When k = 2 we have:

P{xs  c1, xt  c2} = P{xs+h  c1, xt+h  c2}

For any point of s, t and h. If the variance function exists,
then: gamma(s, t) = gamma(s + h, t + h).

In this context, is a random walk with drift strictly stationary?
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Stationarity

A weakly stationary time series xt is a finite variance process
such that:

Definition

(i) the mean-value function, µt , is constant and does not depend
on time t, and (ii) the autocovariance function, �(s, t), depends on
s and t only through their di↵erence |s � t|.

From now on, we will use the term stationary to mean weakly
stationary; if a process is strictly stationary, we will use the term
strictly stationary. An important case in which stationarity implies
strict stationarity is if the series is Gaussian (i.e., all finite
distributions of the series are Gaussian).
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Multiple linear regression in time series models

Next we introduce (remember) the classical linear regression
model.

Let X be a matrix of n ⇥ k entries where we have n
observations for k independent variables.

Let Y be a vector of n observations of the dependent variable.

It is possible to propose a linear estimation model that relates
the independent variables to the dependent variable X and the
variable Y:

2

6664

Y1

Y2
...
Yn

3

7775
=

2

6664

1 X11 X21 · · · Xk1

1 X12 X22 · · · Xk2
...

...
. . .

...
1 X1n X2n · · · Xkn

3

7775

2

6664

�0
�1
...
�n

3

7775
+

2

6664

✏1
✏2
...
✏n

3

7775
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Multiple linear regression in time series models

The model can also be written in a compact form as:

Y = X� + ✏

We see that this model presents systematic (deterministic)
components (X�) and stochastic (✏). The objective is to
determine the coe�cients �i that linearly relate the variables Xi

and Y . For this we use the method of ordinary least squares
(OLS). The least squares criterion seeks to minimize the sum of
the squares of the residuals: Min

P
e2.
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Multiple linear regression in time series models

Next, we review the derivation of the OLS method. First, the
vector of residuals can be obtained as:

e = Y � X �̂

Where �̂ represents the vector estimator �.

Thus the sum of the square of the errors will be:

e0e =
⇥
e1 e2 . . . en

⇤

2

6664

e1
e2
...
en

3

7775
=

⇥
e21 + e22 + . . .+ e2n

⇤
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Multiple linear regression in time series models

On the other hand, it can also be written as:

e0e =
⇣
Y � X�̂

⌘0 ⇣
Y � X�̂

⌘

= Y0Y � �̂0X0Y � Y0X�̂ + �̂0X0X�̂

= Y0Y � 2�̂0X0Y + �̂0X0X�̂

To minimize the square of the residuals we resort to
di↵erential calculus:

@(e0e)

@�̂
= �2X0Y + 2X0X�̂ = 0

Then �̂ will be a minimum of e0e if the second derivative is
positive or equivalently X is positive definite.
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From the previous expression we obtain:

X0X�̂ = X0Y

Finally, multiplying by (X0X)�1 on both sides, we obtain �̂:

�̂ = (X0X)�1X0Y

The ease of OLS calculation has influenced its popularity. The
estimators are obtained through simple matrix operations.
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Properties of OLS estimators

The OLS estimation is the best linear unbiased estimator
(BLUE). The proof of this proposition is provided by the
Gauss-Markov theorem.

1 Unbiased: E (�̂) = �, i.e. the expected value of the estimator
is the true value of the unknown parameter.

2 Best: Minimum variance.
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Gauss-Markov Theorem

Assumptions

There is a linear relationship between X and Y

No multicollinearity (X is linearly independent)

E (✏|X) = 0. Equivalently E (Y) =X�

E (✏✏0|X) = �2I. Errors are homocedastic and there is no
autocorrelation.

X and ✏ are unrelated. Cov(X✏) = 0

Usually, all of these assumptions are checked in the diagnostic
testing process.
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Theorem Proof

OLS estimators are the best linear unbiased estimators for �
(BLUE)

�̂ es un estimador insesgado de �.

�̂ = (X0X)�1X0Y

= (X0X)�1X0 (X� + ✏)

= � + (X0X)�1X0✏

E
⇣
�̂
⌘

= E
�
� + (X0X)�1X0✏

�

= E (�) + E
�
(X0X)�1X0✏

�

= � + (X0X)�1X0E (✏)

= �
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Time Series Regression

�̂ is a linear estimator of �.

�̂ = (X0X)�1X0Y

= (X0X)�1X0 (X� + ✏)

= � + (X0X)�1X0✏

= � + A✏

Prove that it is a minimum variance estimator.
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Statistical Evaluation of Estimated Regressions

The coe�cient of determination R2 is a measure of
goodness of fit, the degree to which the independent variables
jointly explain the variation in the dependent variable over its
mean. R2 increases each time the number of regressors, k,
increases, relative to the sample size, n, regardless of the
theoretical justification for including additional variables. In
the limit, if n = k + 1, R2 = 1 but such a regression has zero
explanatory power.
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Statistical Evaluation of Estimated Regressions

Adjusted R2 ttakes into account the number of regressors
relative to the sample size. The adjusted R2 is particularly
useful to evaluate the relative fit of a set of regressions
estimated for the same dependent variable but with a di↵erent
number of independent variables. A mechanical criterion for
model selection is to maximize the adjusted R2.
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Statistical Evaluation of Estimated Regressions

Test t

The t-tests are hypothesis tests on the estimated parameters
to determine whether they are individually significantly
di↵erent from zero. Null hypothesis: H0: �j = 0.

�̂j � �j

SE (�̂j)
=

�̂j � 0

SE (�̂j)
=

�̂j

SE (�̂j)
⇠ t(n � k � 1)

SE (�̂j)= standard error of the estimated parameter
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Nonsense regression and spurious

Nonsense regressions, are mutually independent time series
that produce good indicators in the regression, due to the
high level of serial correlation in each series.

Spurious regressions occur when the data depend on a third
common factor, for example: a time trend. The spurious
relationship gives the impression that there is a statistical link
between two variables, which is invalidated when examined
objectively.

Marcelo Villena, PhD Stationary Variables



The nature of time series data
Statistical time series modeling

Time series decomposition
Dependency measures

Stationarity
Multiple linear regression in time series models

References

Example 3: Regressions

As a further example, we calculate the beta of a financial
asset. The beta is a measure of systematic risk, which is
measured with respect to the relation of the returns of the
asset, with those of the diversified index of the market, in this
case the S&P index already studied.

In this case we calculate the beta of another index, the Russell
2000 (denoted by RUT) which measures the performance of
small cap companies.
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Example 3: Regressions
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R Code

rm(list=ls())
mydata < − read.csv (“/Users/marcelovillena/Desktop/sp.csv”,
header = TRUE, stringsAsFactors = FALSE)
precio sp < − mydata$“Adj.Close”: lnprecio sp < − log(precio sp
) ;
Dlnprecio sp < − di↵(lnprecio sp ,1)
mydata < − read.csv (“/Users/marcelovillena/Desktop/rut.csv”,
header = TRUE, stringsAsFactors = FALSE)
precio rut < − mydata$“rut”; lnprecio rut < − log(precio rut ) ;
Dlnprecio rut < − di↵(lnprecio rut ,1)
reg1 < − lm ( Dlnprecio sp˜ Dlnprecio rut)
summary(reg1)
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Example 3: Regressions
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Example 3: Regressions

From the following code we store the residuals and analyze
the assumptions required for a good regression.

R Code

residuos < � rstandard(reg1)
valores.ajustados < � fitted(reg1)
plot(valores.ajustados, residuos)
qqnorm(residuos)
qqline(residuos
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Example 3: Regressions
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Example 3: Regressions
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Example 3: Regressions
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Homework 1
1 Our first task will be to install R and to collect di↵erent

macro variables (at least 5) with di↵erent frequencies (daily,
monthly, quarterly, yearly) of a country of your choice. The
data will be used throughout the course.

2 Graph and comment on the data.
3 Obtain and comment on the descriptive statistics of the data.
4 Analyse the seasonality of the data.
5 Check if the variables are random walks.
6 Comment very briefly this paper:

https://www.journals.uchicago.edu/doi/pdf/10.1086/654107
Campbell, J. Y., & Mankiw, N. G. (1989).

Assignments should always be presented in powerpoint, and
should be accompanied by the data and code used.
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1 Non-stationary integrated processes and the unit root test
On Detrending
On the decomposition of a series
Unit Root

2 Autoregressive and distributed lag models
Distributed lagged model
Ad hoc estimation
Koyck’s method
Autoregressive Distributed Lag Models (ARDL)

3 Examples
Okun’s Law
Phillips Curve

4 References
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On Detrending
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Unit Root

Example from the previous class...
Detrending global temperature

As we saw in the previous class, the evolution of the global
temperature showed a linear trend, so we can assume that it
can be written as:

xt = µt + yt

We will see two ways of decomposing the series, “filtering” the
trend.
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Example from the previous class...
Detrending global temperature

R Code

rm(list=ls())
mydata< −read.csv (“gtemp.csv”)
gtemp< −mydata$“gtem”
plot(gtemp, type=“o”, ylab=“Global Temperature Deviations”)
t< −1:142
summary(reg < − lm(gtemp˜ t))
plot(gtemp, type=“o”, ylab=“Global Temperature Deviations”)
abline(reg)
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Example from the previous class...
Detrending global temperature
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Example from the previous class...
Detrending global temperature
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Example from the previous class...
Detrending global temperature

R Code

reg1= lm(gtemp˜ time(gtemp), na.action=NULL)
par(mfrow=c(2,1))
plot(resid(reg1), type=“o”, main=“detrended”)
plot(di↵(gtemp), type=“o”, main=“first di↵erence”)
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Example from the previous class...
Detrending global temperature
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Example from the previous class...
Detrending global temperature

R Code

par(mfrow=c(3,1))
acf(gtemp, 48, main=“gtemp”)
acf(resid(reg), 48, main=“detrended”)
acf(di↵(gtemp), 48, main=“first di↵erence”)
mean (di↵ (gtemp))
sd (di↵ (gtemp)) / sqrt (longitud (di↵ (gtemp)))
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Example from the previous class...
Detrending global temperature
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On the decomposition of a series

In the graphs we can appreciate that the first di↵erence of the
series produces di↵erent results than the trend removal by
trend regression.

In the case of the ACF graphs, the di↵erenced process shows
minimal autocorrelation, which may imply that the global
temperature series is similar to a random walk with drift.

It is interesting to note that this series could be seen as a
random walk with drift.

The mean of the di↵erenced series, which is an estimate of the
drift, is approximately ,0066, but with a large standard error.
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On the decomposition of a series

An advantage of di↵erencing over the estimation of a trend,
to eliminate trends, is that no parameters are estimated in the
di↵erencing operation. A disadvantage, however, is that
di↵erencing does not yield an estimate of the stationary
process yt .

Thus, if an estimate of yt is essential, then estimating a trend
may be the most appropriate way to remove trends from the
series. If the goal is to force the data to stationarity, then
di↵erencing may be more appropriate. Di↵erencing is also a
viable tool if the trend is fixed.

In the U.S., the o�cial decomposition and seasonal
adjustment procedure is called ”seasonal adjustment.
X-13-ARIMA

http://www.census.gov/srd/www/x13as/
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Non-stationary integrated processes and the unit root test

Recall that if a time series is stationary, its mean, variance and
autocovariance (at di↵erent lags) remain the same regardless of
the point in time at which they are measured, i.e. they are time
invariant. On the other hand, we have seen that stationarity is a
desirable characteristic, for example, in terms of the normality of
the variables.
However, in practice we encounter:

1 Non-stationary processes: When a stochastic time series
process is time-dependent.

2 Integrated Processes: a non-stationary process, which can
be transformed to a stationary process by di↵erentiating.
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Integrated Processes

With respect to Integrated Processes, we start by defining:

The sequence xt is integrated of order d, I (d), if it requires to
be di↵erentiated d times to become stationary.

All Integrated Processes are non-stationary, but not all
non-stationary processes are integrated.

If the sequence xt has a unit ration, then, it is an integrated
process, and of that non-stationary.
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On Detrending

On the decomposition of a series

Unit Root

Consequences of Integrated Processes (Unit Root)

It is important to note that standard statistical tests are not
appropriate when OLS is applied to integrated processes, see
for example Granger 1974.

If the sequence xt is a unit ration process, then any shock has
a permanent (non-decaying) e↵ect. Hence, the time series is
properly modeled by assuming a stochastic trend. The time
series can then be defined as stationary di↵erentiable, and the
trend should be taken out by di↵erentiating.

In this context, the terms non-stationarity, random walk,
unit root and stochastic trend are considered
synonymous.
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Is random walk nonstationarity?

yt = yt�1 + "t

Var(yt) = Var(yt�1 + "t)

Var(yt) = Var(yt�1) + �2
"

Var(yt) = Var(yt�2 + "t�1) + �2
"

Var(yt) = Var(yt�2) + 2�2
"

repeating this for t steps:

Var(yt) = Var(y0) + t�2
"

If we assume that y0 is given:

Var(yt) = t�2
"

The variance of the process increases with time, and
therefore RW os not stationary.

Marcelo Villena, PhD Stationary Variables



Non-stationary integrated processes and the unit root test

Autoregressive and distributed lag models

Examples

References

On Detrending

On the decomposition of a series

Unit Root

Test of Unit Root

Consider the following autoregressive process:

xt = ↵1xt�1 + "t (1)

If ↵1 = 1, the sequence xt is a unit root.

The standard test to prove this hypothesis is to subtract xt�1

from the above equation such that:

4xt = �xt � 1 + "t (2)

where � = ↵1 � 1, and 4xt = xt � xt�1. In this context,
proving the hypothesis that equation (1) has a unit ration,
↵1 = 1, is equivalent to proving the hypothesis of � = 0 in
equation (2).
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Test of Unit Root

This is basically the Dickey-Fuller (DF) approach for unit
roots, see e.g., Dickey Fuller 1981.

Additionally there is the Augmented Dickey-Fuller test
(ADF), and many other tests that are based on similar logic,
which we will use during the course.
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Unit Root

Example of Unit Root Test - Dickey-Fuller

R Code

install.packages(“tseries”)
library(tseries)
adf.test(gtemp)
adf.test(resid(reg1))
adf.test(di↵(gtemp))
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Example of Unit Root Test - Dickey-Fuller

Augmented Dickey-Fuller Test
data: gtemp
Dickey-Fuller = -2.0624, Lag order = 5, p-value = 0.5505
alternative hypothesis: stationary

Augmented Dickey-Fuller Test
data: resid(reg1)
Dickey-Fuller = -2.0624, Lag order = 5, p-value = 0.5505
alternative hypothesis: stationary

Augmented Dickey-Fuller Test
data: di↵(gtemp)
Dickey-Fuller = -6.8179, Lag order = 5, p-value = 0.01
alternative hypothesis: stationary
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Distributed lagged model

Ad hoc estimation

Koyck’s method

Autoregressive Distributed Lag Models (ARDL)

Distributed lagged model

In regression analysis with time series data, when the
regression model includes not only current values but also
lagged (past) values of the explanatory variables (the X ’s), it
is called a distributed lagged model.

If the model includes one or more lagged values of the
dependent variable among its explanatory variables, it is called
an autorregressive model.
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Distributed lagged model

Ad hoc estimation

Koyck’s method

Autoregressive Distributed Lag Models (ARDL)

Distributed lagged model

Thus,

Yt = ↵+ �0Xt + �1Xt�1 + �2Xt�2 + ut

represents a distributed lagged model, while

Yt = ↵+ �Xt + �Yt�1 + ut

is an example of an autoregressive model. The latter are also
known as dynamic models, since they indicate the trajectory over
time of the dependent variable relative to its past value(s).
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More generally, we would write

Yt = ↵+ �0Xt + �1Xt�1 + �2Xt�2 + · · ·+ �kXt�k + ut

which is the distributed lags model with a finite lag of k
periods. The coe�cient �0 is known as the short-run or
impact multiplier because it gives the change in the mean
value of Y that follows a unit change in X in the same
period.1

Technically, �0 is the partial derivative of Y with respect to
Xt , �1 with respect to Xt�1, �2 with respect to Xt�2, and so
on. Symbolically, @Yt

@Xt�k
= �k .
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If the change in X remains the same from the beginning, then
(�0 + �1) gives the change in (the mean value of) Y in the
next period (�0 + �1 + �2) in the one that follows, and so on.
These partial sums are denoted as interim, or intermediate,
multipliers. Finally, after k periods we obtain:X

�i = �0 + �1 + �2 + ...+ �k = �

which is known as the long-run or total distributed lag
multiplier, provided that the sum � exists (we will explain this
later). If we define

�⇤
i =

�iP
�i

=
�i

�

we obtain ”standardized”�i . The partial sums of the
standardized �i give the proportion of the long-run, or total,
impact felt during a certain period.

Marcelo Villena, PhD Stationary Variables



Non-stationary integrated processes and the unit root test

Autoregressive and distributed lag models

Examples

References

Distributed lagged model

Ad hoc estimation

Koyck’s method

Autoregressive Distributed Lag Models (ARDL)

Distributed lagged model

Autoregressive and distributed lag models are very
common in economic analysis.

We will study them in detail in order to find out the following:

1. What is the role of lags in economics?

2. On what grounds are lags justified?

3. Is there any theoretical justification for the lagged models
common in empirical econometrics?
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4. What is the relationship, if any, between autoregressive
models and distributed lag models, and can they be derived
from each other?

5. What are some statistical problems related to the estimation
of such models?

6. Does the lagged-ahead relationship between variables imply
causality? If so, how is it measured?
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On the the nature of lagged phenomena

1. Psychological reasons. As a result of force of habit (inertia),
people do not change their consumption habits immediately
after a price reduction or an increase in income, perhaps
because the process of change entails some immediate
disadvantage.

2. Technological reasons. Suppose that the price of capital
relative to labor is reduced, so that it is economically feasible
to substitute labor for capital. Of course, the addition of
capital takes time (gestation period). Moreover, if the price
fall is expected to be temporary, firms may not rush to
substitute labor for capital, especially if they expect that after
the temporary fall the price of capital may rise beyond its
previous level. Sometimes, imperfect knowledge also explains
lags.
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On the the nature of lagged phenomena

3. Institutional reasons. These reasons also contribute to lags.
For example, contractual obligations may prevent companies
from switching from one source of labor or raw materials to
another. For example, those who placed funds in long-term
savings accounts with fixed terms, such as one, three or seven
years, are ”locked in,” even though money market conditions
now allow higher returns elsewhere.
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Estimation of distributed lag models

We already established that distributed lag models play a very
useful role in economics, but how do we estimate such
models?

Suppose we have the following model of distributed lags for
one explanatory variable:

Yt = ↵+ �0Xt + �1Xt�1 + �2Xt�2 + ...+ ut

where we have not defined the lag length, i.e., how far back in
the past we wish to go. Such a model is called an infinite lag
model, while a model of the type shown above is called a finite
distributed lag model because the lag length k is specified.
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Estimation of distributed lag models

How do we estimate a and the b’s of this equation? We can adopt
two approaches:

1 ad hoc estimation and

2 a priori constraints on the �0s, if we assume that (the �0s)
follow a systematic pattern.
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Ad hoc estimation of distributed lag models.

Since the explanatory variable Xt is assumed to be
nonstochastic (or at least uncorrelated with the disturbance
term ut), equally nonstochastic are Xt�1,Xt�2, and so on.
Therefore, in principle, the ordinary least squares (OLS)
method is applicable.

This is the approach of Alt and Tinbergen who suggest that
to estimate a distributed lag models, we proceed sequentially,
i.e., first regress Yt on Xt , then regress Yt on Xt and Xt�1,
then regress Yt on Xt , Xt�1, and Xt�2,and so on. This
sequential process stops when the regression coe�cients of
the lagged variables start to become statistically insignificant
and/or the coe�cient of at least one variable changes its sign
from positive to negative, or vice versa.
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Ad hoc disadventages.

Although ad hoc estimation seems straightforward and
unobtrusive, it has many disadvantages, including the following:

1 There is no a priori guidance on the maximum length the lag
should be.

2 As successive lags are estimated, fewer degrees of freedom
remain, thus weakening statistical inference somewhat.

3 More importantly, in economic time series data, successive
(lagged) values tend to be highly correlated; thus,
multi-linearity comes to the fore.
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Koyck’s method for distributed lag models

Koyck proposed a di↵erent method of estimating distributed
lag models. Suppose we start with an infinite distributed lags
model. If all � have the same sign, Koyck assumes that they
reduce geometrically as follows.

�k = �0�k k = 0, 1, ...

where �, such that 0 < � < 1 is known as the rate of decline,
or decay, of the distributed lag, and where 1� � is known as
the rate of adjustment.

What the model postulates is that each successive �
coe�cient is numerically lower than each previous � (this
statement is due to the fact that � < 1), implying that, as
one returns to the distant past, the e↵ect of that lag on Yt

becomes progressively smaller, a very reasonable assumption.
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Koyck’s method for distributed lag models

Note these features of Koyck’s scheme:

1 by assuming non-negative values for �, Koyck eliminates the
possibility that the � will change sign;

2 by assuming that � < 1, he gives less weight to � in the
distant past than today; and

3 It ensures that the sum of the �, which provides the long-run
multiplier.
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The proof of Koyck’s model

The proof of Koyck’s model is fairly straightforward. Given the
following distributed lags model:

Yt = ↵+ �0Xt + �1Xt�1 + �2Xt�2 + ...+ ut

Applying the transformation �k = �0�k we have:

Yt = ↵+ �0Xt + �0�
1Xt�1 + �0�

2Xt�2 + ...+ ut

Then we lag the equation by one period:

Yt�1 = ↵+ �0Xt�1 + �0�
1Xt�2 + �0�

2Xt�3 + ...+ ut
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The proof of Koyck’s model

Then we multiply by l:

�Yt�1 = �↵+ ��0Xt�1 + ��0�
1Xt�2 + ��0�

2Xt�3 + ...+ ut

By subtracting both equations we have:
Yt � �Yt�1 = ↵(1� �) + �0Xt + (ut � �ut�1)

By reordering we have:

Yt = ↵(1� �) + �0Xt + �Yt�1 + vt

where vt = (ut � �ut�1) is a moving average of ut and ut–1.
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On the problems of Koyck’s model

The presence of autocorrelation can lead to misleading results
as they violate the assumptions of the Gauss Markov Theorem.

However, in the presence of correlated errors, we can still
proceed to fit a model makes up for these violations.

Considering this, the least squares estimator is no longer
unbiased, but it does have the desirable large sample property
of consistency, and if the errors are normally distributed, it is
best in a large sample sense.

It is also important to note that is assumed to be uncorrelated
random errors with zero mean and constant variance.

In such cases, the time series assumption that the error
term is independent of current, past, and future values
of is no longer valid.
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Least Squares Estimation

In the presence of serially correlated errors, the consequences of
least squares estimation are similar to the consequences of ignoring
the presence of heteroskedasticity, namely

1 The least squares estimator is still a linear unbiased estimator,
but is no longer best.

2 The formulas for the standard errors usually computed for the
least square estimator are no longer correct. Although the
usual least squares standard errors are not the correct ones, it
is possible to compute correct standard errors for the least
squares estimator when the errors are serially correlated.
These standard errors are known as HAC (heteroskedasticity
and autocorrelation consistent) standard errors, or
Newey-West standard errors, and they are analogous to
heteroskedasticity consistent, or White, standard errors.
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Adaptive expectations

Suppose we postulate the following model:

Yt = �0 + �1X ⇤
t + ut

For example, let us assume that Y = demand for money (real
cash balances) X ⇤ = normal or expected long term or
equilibrium interest rate, u optimal u = error term.

Since the expectations variable X ⇤ is not directly observable,
we can propose the following hypothesis on how expectations
are shaped:

X ⇤
t � X ⇤

t�1 = �(Xt�1 � X ⇤
t�1)

where g, such that 0 < g  1, is known as the expectations
coe�cient. This hypothesis is known as the adaptive
expectations, progressive expectations or learning-by-error
hypothesis, popularized by Cagan and Friedman.
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Adaptive expectations

Replacing:

Yt = �0 + �1�Xt + �1(1� �)X ⇤
t�1 + ut

Now lagging our original equation one period, multiply it by
1� �, and subtracting the equation above, we obtain

Yt = ��0 + ��1Xt + (1� �)Yt�1 + vt

where vt = ut � (1� �)ut�1

Similar to the Koyck model!

Yt = ↵(1� �) + �0Xt + �Yt�1 + vt
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Adaptive expectations

Until the rational expectations (RE) hypothesis, first put
forward by J. Muth and later disseminated by Robert Lucas
and Thomas Sargent, the adaptive expectations (AE)
hypothesis was very popular in empirical economics.

Proponents of the RE hypothesis argue that the RE
hypothesis is inadequate because the formulation of
expectations is based only on past values of a variable,
whereas the RE hypothesis assumes ”that individual
economic agents use currently available and relevant
information in the formation of their expectations and
do not rely solely on past experience...”.
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Autoregressive Distributed Lag Models

An autoregressive distributed lag model (ARDL) is a model
that contains both independent variables and their lagged
values as well as the lagged values of the dependent variable.

In its more general form, with p lags of Yt and q lags of Xt ,
an ARDL(p, q) model can be written as:

Yt = � + ✓1Yt�1 + ...+ ✓pYt�p + �1Xt�1 + ...+ �qXt�q + vt
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Autoregressive Distributed Lag Models

The ARDL has several advantages.
It captures the dynamic e↵ects from the lagged X ’s and the
lagged Y 0s by including a su�cient number of lags of Y and
X ,
We can eliminate serial correlation in the errors.
An ARDL model can be transfomed into one with only lagged
X ’s,.
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About Model Selection

It may happen that several models describe the time series
satisfactorily, making it necessary to select the most
appropriate model.

This selection process can be simple or a bit more complex, so
it is necessary to use model selection criteria.

The most common model selection criteria are the AIC
(Akaike Information Criterion) and the BIC (Bayesian
Information Criterion) which is a Bayesian extension of the
first one.
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Information Criteria

Definition

AIC = log �̂2

k +
n + 2k

n

where �̂2

k = SSEk
n , and k is the number of model parameters, n the

sample size, and SSEk is equal to the sum of the squared residuals
under the model k (SSEk =

Pn
t=1

(xt � x̄)2).

The value of k that produces the minimum AIC represents the best

model. The idea is that minimizing �̂2

k represents a reasonable
objective, except that it decreases monotonically as k increases.
Therefore, we should penalize the error variance by a term
proportional to the number of parameters.
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Information Criteria

Definitions

AICc = log �̂2

k +
n + k

n � k � 2

AICc = log �̂2

k +
klogn

n

BIC is also known as the Schwarz Information Criterion
(SIC). Several simulation studies have verified that BIC is
adequate to obtain the correct order in large samples, while
AICc tends to be superior in smaller samples where the
relative number of parameters is large.
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An Example: Okun’s Law

We will apply the finite distributed lag model to Okun’s Law.

Okun was an economist who posited that there was a
relationship between the change in unemployment from one
period to the next and the rate of growth of output in the
economy.

Mathetmatically, Okun’s Law can be expressed as:

Ut � Ut�1 = �(Gt � GN)

where Ut is the unemployment rate in period t. Gt is the
growth rate of output in period t, and GN is the“normal”
growth rate, which we assume constant over time.
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An Example: Okun’s Law

We can rewrite the above equation in more familiar notation
of the multiple regresion model by denoting the change in
unemployment as: 4Ut = UUt � Ut�1. We then set � = �
and GN = ↵. Including an error term to our equation yields:

4Ut = ↵+ �0Gt + µt

Acknowledging the changes in output are likely to have a
distributed-lag e↵ect on unemployment - not all of the e↵ect
will take place instantenously. We can then further expand
our equation to:

4Ut = ↵+ �0Gt + �1Gt�1 + �2Gt�2 + ...+ �qGt�q + µt
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An Example: Okun’s Law

R Code

Okun<-read.csv(”Okun.csv”)
g <- ts(Okun$G, start=c(1948,1), frequency=4)
u <- ts(Okun$U, start=c(1948,1), frequency=4)
ts.plot(g, col=’blue’, ylab=’Growth’)
ts.plot(u, col=’red’, ylab=’� Unemployment Rate’)
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An Example: Okun’s Law

R Code

library(quantmod)
library(mFilter)
getSymbols(’GDP’,src=’FRED’) plot(GDP)
hp.decom <- hpfilter(GDP, freq = 1600, type = ”lambda”)
ts.plot(hp.decom$trend)
ts.plot(hp.decom$cycle)
g Comp <- decompose(g) plot(g Comp)
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An Example: Okun’s Law

R Code

acf(g, type=’correlation’, plot=FALSE)$acf
acf(g, type=’correlation’)
okun.lag2 <- dynlm(d(u, 1) ˜ L(g, 0:2))
okun.lag3 <- dynlm(d(u, 1) ˜ L(g, 0:3))
summary(okun.lag2)
summary(okun.lag3)
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An Example: Okun’s Law

R Code

# HAC (heteroskedasticity and autocorrelation consistent)
standard errors
library(lmtest)
library(sandwich)
coeftest(okun.lag2, vcov=vcovHAC(okun.lag2))
coeftest(okun.lag3, vcov=vcovHAC(okun.lag3))
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An Example: The Phillips Curve

The Phillips Curve is an empirical model that describes the
relationship between inflation and unemployment and was
named after A.W. Phillips, the economist who discovered this
relationship. Mathematically, the relationship between
unemployment and inflation can be expressed as:

INFt = �1 � �24Ut + µt

where INFt is the inflation rate during period, INFE
t�1

denotes
inflationary expectations during period t, and
4Ut = UUt � Ut�1. We can rewrite the above equation using
more familiar regression terms as:

INFt = INFE
t�1 � �(Ut � UN)
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Homework 2

Test the econometric validity of one of these models, for at
least three time periods.

Are the series under analysis stationary?

Do the results iof the model mprove using seasonally adjusted
series?

Compare the robustness of the Ad Hoc and Koyck models, for
at least three time periods.

How does perform the ARDL model?

What is the role and interpretation of the results in these
famous time series models?

What are the economic conclussions that yopu can extract
from your model?
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ARIMA models: modeling the short-term

In 1970, George Box and Gwilym Jenkins two engineers with a
statistical background, systematized statistical models for the
analysis of univariate time series, see [1].

In their seminal work, Box & Jenkings proposed a
methodology that take into account the dependence between
data.

Thus, each observation is modeled as a function of the
previous values, the time dimension therefore plays a
fundamental role in the statistical analysis.
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ARIMA models: modeling the short-term

Box-Jenkins prediction models belong to the family of linear
algebraic models, which consider a real time series as a
probable realization of a certain stochastic process.

These models are known by the generic name of ARIMA
(Auto-regressive Integrated Moving Average), which
derives from its three components Autoregressive (AR),
Integrated (I) Moving Averages (MA).

Modeling a time series with this methodology involves
identifying a suitable ARIMA model. that fits the series under
study. Besides, it must contains the minimum necessary
elements to describe the phenomenon and is useful for
forecasting.
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About the backshift operator

Backshift operator

We start defining the backshift operator as:

Bxt = xt�1 (1)

B2xt = B(Bxt) = Bxt�1 = xt�2 (2)

Aśı:
Bkxt = xt�k (3)

Thus we have that the first di↵erence can be defined in terms of
lags, in other words the backshift operator:

4xt = xt � xt�1 = (1� B)xt (4)

In general:
4dxt = (1� B)dxt (5)
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Example Autoregressive Process of Order 1: AR(1)

AR(p)

An autoregressive model of order p, often shortened to AR(p), has
the form:

xt = �1xt�1 + �2xt�2 + . . . + �pxt�p + ✏t (6)

where xt is a stationary series, and �1, �2, . . . , �p are constant.
If the mean of xt is µ, then we can replace xt � µ in (6)

xt�µ = �1(xt�1�µ)+�2(xt�2�µ)+ . . . +�p(xt�p�µ)+✏t (7)

Rearranging terms

xt = ↵+ �1xt�1 + �2xt�2 + . . . + �pxt�p + ✏t (8)

where ↵ = µ(1� �1 � �2 . . .�p)
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Example Autoregressive Process of Order 1: AR(1)

AR(p)

Using the backward operators AR(p) looks like:

(1� �1B + �2B
2 � . . . � �pB

p) (9)

or even more concisely
�(B)xt = ✏t (10)
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Example Autoregressive Process of Order 1: AR(1)

In an AR(1) process the variable xt is explained only by its
past value xt�1:

xt = �xt�1 + "t (11)

where as we know "t is a white noise process with zero mean
and constant variance �2, and � is the parameter yo estimate.

To verify that the AR(1) model is stationary we must prove
the following two conditions.
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Example Autoregressive Process of Order 1: AR(1)

(1) Stationary in mean

E (xt) = E (�xt�1 + "t) = �E (xt�1) (12)

In order for the process to be stationary, the mean must be
constant and finite in time, E (xt) = E (xt�1), which implies:

E (xt) (1� �) = 0

E (xt) =
0

1� �
(13)

Therefore, for the process to be stationary the pairameter
must be di↵ernt from 0, � 6= 0.
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Example Autoregressive Process of Order 1: AR(1)

(2) Stationary in covariance To verify that the AR(1) model is
stationary, the variance must be constant and finite in time:

� = E (xt�E (xt))
2 = E (�xt�1+"t�0)2 = �2var(xt�1)+�2 (14)

Assuming that the process is stationary:

E (xt)2 = var(xt�1) = var(xt) = �

From here we have that:

� = �2� + �2

Therefore:

� =
�2

1� �2
(15)

Then for this process to be stationary, it is necessary that
|�| < 1.
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Example Autoregressive Process of Order 1: AR(1)

If it is satisfied that |�| < 1, then we can represent the AR(1)
model as a linear process given by:

xt =
1X

j=0

�j✏t�j (16)

Equation (16) is called the causal stationary solution of
the model. The term causal refers to the fact that xt does
not depend on the future. In fact, by simple substitution,

1X

j=0

�j✏t�j

| {z }
xt

= �

 1X

k=0

�k✏t�1�k

!

| {z }
xt�1

+✏t
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AR(1) model simulation

R Code

par(mar=c(1,1,1,1))
par(mfrow=c(2,1))
plot(arima.sim(list(order=c(1,0,0), ar=.9), n=100), ylab=“x”,
main=(expression(AR(1) phi==+.9)))
plot(arima.sim(list(order=c(1,0,0), ar=-.9), n=100), ylab=“x”,
main=(expression(AR(1) phi==-.9)))
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AR(1) model simulation
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AR(1) model identification

In the case of an AR type process, the correlogram, graphical
representation of the autocorrelation function, will have a damped
behavior towards zero with all positive values, in case ✓ > 0, or
alternating the sign, starting with negative, if ✓ < 0.
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AR(1) model identification
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Moving Average - MA (q)

As an alternative to the autoregressive representation in which
the xt on the left hand side of the equation is assumed to be
linearly combined, the q-order moving average model,
abbreviated as MA(q), assumes that the white noise ✏t usually
on the right hand side of the equation, are linearly combined
to model the observed data.
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ARIMA models: modeling the short-term

Definition: Moving Average - MA (q)

xt = ✏t + ✓1✏t�1 + ✓2✏t�2 + . . . + ✓q✏t�q (17)

where there are q lags of the moving average ✏t and ✓1 + ✓2 + . . .
+ ✓q are parameters.

Although it is not necessary, we assume that ✏t is a white noise
series.
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ARIMA models: modeling the short-term

Definition: Moving Average - MA (q)

We can also write the process MA(q) in the equivalent form:

xt = ✓t(B)✏t (18)

where ✓t is the moving average operator defined as:

✓(B) = 1 + ✓1B + ✓2B
2 + . . . + ✓qB

q (19)

Unlike the autoregressive process, the moving average process is
stationary for any value of the parameters ✓1 + ✓2 + . . . + ✓q.
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Interpretation of the moving average model - MA(q)

Just as an autoregressive model is intuitively simple to
understand, the formulation of a moving average model is
often not intuitive. What does it mean that a random variable
is explained in terms of errors made in previous periods, where
do these errors come from, what is the justification for such a
model? In fact, a moving average model can be obtained from
an autoregressive model by making successive substitutions.
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Interpretation of the moving average model - MA(q)

Assume an AR(1) model, with no independent term:

xt = �xt�1 + ✏t (20)

if we consider t � 1 instead oftthe model would be in this case:

xt�1 = �xt�2 + ✏t�1 (21)

replacing:
xt = �2xt�2 + �✏t�1 + ✏t (22)
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Interpretation of the moving average model - MA(q)

If we now substitute xt�2 by its autoregressive expression and so
on we arrive at a model of the type:

xt = ✏t + ✓✏t�1 + ✓2✏t�2 + . . . + ✓q✏t�q (23)

which is the expression, without an independent term, of a moving
average model as the one discussed above. In fact, strictly
speaking, the passage from one model to the other should be done
in reverse, from a MA to an AR, using the general Wold
decomposition theorem.
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MA(1) model simulation

R Code

par(mfrow = c(2,1))
plot(arima.sim(list(order=c(0,0,1), ma=.5), n=100), ylab=“x”,
main=(expression(MA(1) theta==+.5)))
plot(arima.sim(list(order=c(0,0,1), ma=-.5), n=100), ylab=“x”,
main=(expression(MA(1) theta==-.5)))
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MA(1) model simulation
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Identification of MA model

For the identification of all the components of the MA model, as
we saw for the AR model, we use the autocorrelation function
(AFC) and the partial autocorrelation function (PAFC), and thus
proceed to the identification of the components, based on the
graphs of the di↵erent models.
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Identification of MA model
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ARMA models

Definition: Autoregressive moving average - ARMA (p, q)

A time series {xt , t = 0,±1,±2, . . . } is an ARMA(p, q) process, if
it is stationary and

xt = �1xt�1+�2xt�2+. . .+�pxt�p+✏t+✓1✏t�1+✓2✏t�2+. . .+✓q✏t�q

(24)
The parameters p and q are called autoregressive orders and
moving averages, respectively.

If xt has a non-zero mean µ, we establish that
↵ = µ(1� ✓1, . . . � ✓q) and we can rewrite the model as:

xt = ↵+�1xt�1+ . . . +�pxt�p+wt +✓1✏t�1+ . . . +✓q✏t�q. (25)
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Invertibility

A time series is invertible if the errors can be inverted in
a representation of past observations. Thus, for example,
as we have already seen, the AR model is always invertible. In
the case of the ARMA model, the roots of the following
equations must be analyzed to ensure invertibility.

�(z) = 1 + �1z + �2z
2 + . . . + �pz

p (26)

✓(z) = 1 + ✓1z + ✓2z
2 + . . . + ✓qz

q (27)
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Invertibility

In particular the ARMA model will be invertible if and only if
✓(z) 6= 0 for|z |  1 In general, the eigenvalues are the solution
of det(A� �I ) = 0, we see that this is the characteristic
polynomial of the equations we defined above.

Therefore, we see that the eigenvalues of A are the inverse of
the roots of the characteristic polynomial, and that
convergence of the backward iteration occurs when the roots
of the characteristic polynomial lie inside the unit circle.
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Stationarity and Invertibility

Wold showed that all stationary stochastic covariance
processes could be decomposed as the sum of deterministic
and linearly indeterministic processes which were uncorrelated
with all lags; that is, if yt is the stationary covariance, then:

yt = xt + zt (28)

where xt is a stationary deterministic process in covariance
and zt is linearly indeterministic, with Cov(xt , zs) = 0 for all t
and s. This result provides a theoretical basis for Box and
Jenkins’ proposal to model scalar covariance stationary
(unseasonalized) processes such as ARMA processes.
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ARMA models (p,q)

As indicated above, when q = 0, the model is called the
autoregressive model of order p, AR(p), and when p = 0, the
model is called the moving average model of order q, MA(q).

It is useful to write ARIMA models using the AR operator and
the MA operator described above. In particular, the
ARMA(p, q) model can then be written concisely as:

�(B)xt = ✓(B)✏t . (29)

ARIMA models (p, i, q) The ARMA model gains its I and
becomes ARIMA when it must be integrated to achieve
stationarity. The index I will then be the number of times it
must be di↵erenced.
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ARMA model identification

The autocorrelation function (AFC) and the partial
autocorrelation function (PAFC) are used to identify all the
components of the ARMA model, and the seasonal and
non-seasonal components are identified separately, based on
the graphs of the di↵erent models.
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ARMA model identification
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ARMA model identification

Summing up
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SARIMA model

ARIMA models are also capable of modeling a wide range of
seasonal data. The so-called SARIMA models, Seasonal
ARIMA models, are obtained by including additional seasonal
terms in the ARIMA models we have seen so far, as follows:

ARIMA(p, d , q)(P,D,Q)m (30)

where m = number of periods per season.

We use uppercase notation for the seasonal parts of the model
and lowercase notation for the non-seasonal parts of the
model. The seasonal part of the model consists of terms that
are very similar to the non-seasonal components of the model,
but involve seasonal period regressors.
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Statistical evaluation of an ARIMA model

Statistical significance of the parameters: The coe�cients
obtained in the estimation that are not significantly di↵erent
from zero, at a significance level of 5%, are not necessary and
should be eliminated.

Stationarity and invertibility of the estimated model: For
values of the estimated coe�cients close to the
non-stationarity frontier, it is convenient to carry out a unit
root test.

Stability of the estimated model: Even if the parameters
are significant, the model can be rejected if there is a strong
correlation between the model parameters. This occurs when
the correlation coe�cient has an absolute value greater than
0.7, then it is convenient to try alternative models.
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About Model Selection

It may happen that several models describe the time series
satisfactorily, making it necessary to select the most
appropriate model.

This selection process can be simple or a bit more complex, so
it is necessary to use model selection criteria.

The most common model selection criteria are the AIC
(Akaike Information Criterion) and the BIC (Bayesian
Information Criterion) which is a Bayesian extension of the
first one.
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Information Criteria

Definition

AIC = log �̂2k +
n + 2k

n

where �̂2k = SSEk
n , and k is the number of model parameters, n the

sample size, and SSEk is equal to the sum of the squared residuals
under the model k (SSEk =

Pn
t=1(xt � x̄)2).

The value of k that produces the minimum AIC represents the

best model. The idea is that minimizing �̂2k represents a
reasonable objective, except that it decreases monotonically as
k increases. Therefore, we should penalize the error variance
by a term proportional to the number of parameters.
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Information Criteria

Definitions

AICc = log �̂2k +
n + k

n � k � 2

AICc = log �̂2k +
klogn

n

BIC is also known as the Schwarz Information Criterion
(SIC). Several simulation studies have verified that BIC is
adequate to obtain the correct order in large samples, while
AICc tends to be superior in smaller samples where the
relative number of parameters is large.
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About Model Selection

Ultimately, one model is better than another if its prediction is
better. On the other hand, we will say that a prediction is
better than another when it makes a smaller
extra-sampling error.

Thus, the accuracy of the methods used to forecast can be
measured for example through the loss function: Mean
Square Error (MSE), in order to understand which model
provides a better out-of-sample forecast over another. That is:

MSE =
1

T

TX

t=1

(xt � x̂t)
2 (31)

where xt corresponds to the actual value of the series at time
t and x̂ corresponds to the value predicted by the proposed
model at the same instant.
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About Model Selection

Other model selection criteria that consider the
extra-sampling error are: i) the Mean Absolute Error (MAD),
and ii) Mean Absolute Percentage Error (MAPE).

MAD =
1

T

TX

t=1

|xt � x̂t | (32)

MAPE =
1

T

TX

t=1

����1�
xt
x̂t

���� (33)
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Example CPI

Considering monthly CPI data from January 2013 to date in Chile,
obtained from the Central Bank’s website, we will try to predict
the CPI (original series).

R Code

rm(list=ls())
data< �read.csv (“ipc.csv”)
ipc < � ts(data[,2],start = c(2013,1), end=c(2018, 6), frequency
= 12)
plot.ts(ipc, xlab=’Years’, ylab =“Indice de Precios al
Comsumidor’)
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Example CPI

Finding the order of the model. Trend, stationarity, autocorrelation.

R Code

# Descomposición
fit < � stl(ipc, s.window=“period”)
plot(fit)
# Test de ráız unitaria
adf.test(ipc)
adf.test(di↵(ipc))
# Función de autocorrelación (AFC) y autocorrelación parcial
(PAFC)
acf(di↵(ipc),lag=36,lwd=3)
pacf(di↵(ipc),lag=36,lwd=3)
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Example CPI

Series decomposition
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Example CPI - Unit root test

Augmented Dickey-Fuller Test
data: ipc
Dickey-Fuller = -0.11148, Lag order = 4, p-value =0.99
alternative hypothesis: stationary

Augmented Dickey-Fuller Test
data: di↵(ipc)
Dickey-Fuller = -5.8024, Lag order = 3, p-value = 0.01
alternative hypothesis: stationary
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Example CPI

Autocorrelation Function (AFC) and Partial Autocorrelation
Function (PAFC)
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Example CPI - Forecast

R Code

train.series =ipc [1 : 44]
test.series = ipc [45 : 62]
arima.model=arima(train.series, order=c(0,1,1))
forecast=predict(arima.model, length(test.series)
mse < �sum((forecast$pred-test.series)^2)/length(test.series)
mad < � sum(abs(forecast$pred-test.series))/length(test.series)
mape < � sum(abs( 1 -
forecast$pred/test.series))/length(test.series)
fit < � auto.arima(ipc)
summary(fit)
plot(fit)
mape < � sum(abs(1 - test.series/f[[“mean”]]))/length(test.series)
accuracy(fit)
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Example CPI - output ARIMA (0, 1, 1)

Call:
arima(x = train.series, order = c(0, 1, 1))
Coe�cients:

ma1
0.8205

s.e. 0.0906
�2 estimated as 0.1029 : loglikelihood = �12.68, aic = 29.37

forecast ARIMA (0, 1, 1)
mse [1] 69.80031
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Example CPI - Forecast - output ARIMA (0, 1, 1)

$pred
Time Series:
Start = 45
End = 54
Frequency = 1
[1] 113.6141 113.6253 113.6292 113.6307 113.6311 113.6313
[7] 113.6314 113.6314 113.6314 113.6314
$se
Time Series:
Start = 45
End = 54
Frequency = 1
[1] 0.3128668 0.6841962 0.9882296 1.2406559 1.4565974
[6] 1.6465783 1.8174943 1.9738906 2.1188485 2.2545301
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Example CPI - output auto.arima

Series: ipc
ARIMA(0,1,1)(0,0,1)[12] with drift

Coe�cients:
ma1 sma1 drift
0.2329 0.2483 0.2909

s.e. 0.1443 0.1396 0.0500

�2 estimated as 0.07771 : loglikelihood = �8.01
AIC = 24.02 ICc = 24.69 BIC = 32.72

Training set error measures:
ME RMSE MAE MPE

Training set 0.00467571 0.2701877 0.2012356 0.005434612
MAPE MASE ACF1

Training set 0.185618 0.05414794 �0.03368001

Marcelo Villena, PhD Univariate Models



ARIMA models: modeling the short-term
Model selection

Application - Short-term Inflation
References

Example: CPI - nverse MA roots - auto.arima
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Example: CPI - Forecast auto.arima

Forecasts from ARIMA(0,1,1)(0,0,1)[12] with drift
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Box-Jenkins modelling procedure

(1) Data preparation involves transformations and di↵erencing.
Transformations of the data (such as square roots or logarithms)
can help stabilize the variance in a series where the variation
changes with the level. This often happens with business and
economic data. Then the data are di↵erenced until there are no
obvious patterns such as trend or seasonality left in the data.
“Di↵erencing”means taking the di↵erence between consecutive
observations, or between observations a year apart. The di↵erenced
data are often easier to model than the original data.
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Box-Jenkins modelling procedure

(2) Model selection in the Box-Jenkins framework uses various
graphs based on the transformed and di↵erenced data to try to
identify potential ARIMA processes which might provide a good fit
to the data. Later developments have led to other model selection
tools such as Akaike’s Information Criterion.
(3) Parameter estimation means finding the values of the model
coe�cients which provide the best fit to the data. There are
sophisticated computational algorithms designed to do this.
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Box-Jenkins modelling procedure

(4) Model checking involves testing the assumptions of the
model to identify any areas where the model is inadequate. If the
model is found to be inadequate, it is necessary to go back to Step
2 and try to identify a better model.
(5) Forecasting is what the whole procedure is designed to
accomplish. Once the model has been selected, estimated and
checked, it is usually a straight forward task to compute forecasts.
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Homework 3

Calibrate and evaluate (out-of-sample) the following models
for the cpi (consumer price index) of a country of your choice:

ln(cpit) = ↵t + �tt +  t ln(cpit�1) + "t

1 Average of the last 5 years, average of the last 10 years.

2  = 1, � = 0, and ↵ = 0 or ↵ 6= 0, a random walk with drift
and without drift.

3 ↵ constant, � = 0 and  follows an AR(1).

4 ↵ and � constant,  follows an AR(1).

5 AR(1), AR(2), AR(3).
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Homework 3

6 MA(1), MA(2), MA(3).

7 ARIMA(1,1,0), ARIMA(0,1,1), ARIMA(1,1,1)..

8 ↵ ,� and  contants follow random paths with independent
innovations.

9 � = 0, ↵ and  contants follow random paths with
independent innovations.

10 ↵ constant, � = 0 and  contantsfollows a random walk.
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Notation and Concepts
Vector autoregressive models compared with structural equations models

Vector autoregressive models - VAR

So far we have considered models that impose a unidirectional
relationship: the right-hand side variable is influenced by the
left-hand side variables, but not vice versa.

There are many cases in which the opposite should also be
allowed, i.e., all variables should a↵ect each other.

Sometimes causality is assumed, although as we will see later,
high correlation is not synonymous of causality.

In this context, and since Sims’ critique in the early 1980s,
multivariate data analysis, in the context of vector
autoregressive models (VARs), has become a standard tool
in econometrics.
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Notation and Concepts
Vector autoregressive models compared with structural equations models

Vector autoregressive models - VAR

Vector autoregressive models (VARs) are a system of two
or more time series that is modeled considering lags of the
variables and the dynamic interaction that may exist between
them.
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Notation and Concepts
Vector autoregressive models compared with structural equations models

Vector autoregressive models - VAR

It consists mainly of two dimensions, the number of variables
(g) and the number of lags (k). The simplest case is a
bivariate VAR:

y1t = �10+�11y1t�1+. . .+�1ky1t�k+↵11y2t�1+. . .+↵1ky2t�k+µ1t

y2t = �20+�21y2t�1+. . .+�2ky2t�k+↵21y1t�1+. . .+↵2ky1t�k+µ2t

where uit is an error term with E (uit) = 0, i = 1, 2; E (u1tu2t) = 0.

The assumption of independence from errors can be relaxed,
as we will see later. The analysis could be extended for
example to a VAR model (g), where we have g variables and g
equations.
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Notation and Concepts
Vector autoregressive models compared with structural equations models

Notation and Concepts

An important feature of VAR models is the simplicity of their
notation. For example, consider the case above, where k = 1.
We can write this model as:

y1t = �10 + �11y1t�1 + ↵11y2t�1 + µ1t

y2t = �20 + �21y2t�1 + ↵21y1t�1 + µ2t

or
✓
y1t

y2t

◆
=

✓
�10
�20

◆
+

✓
�11 ↵11

↵21 �21

◆✓
y1t�1

y2t�1

◆
+

✓
µ1t

µ2t

◆
(1)

or even more compactly as

yt =
gx1

�0+
gx1

�1
gxg

yt�1+
gx1

µ1t

gx1
(2)
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Notation and Concepts
Vector autoregressive models compared with structural equations models

Vector autoregressive models - VAR

This model can be extended to the case where there are k
delays of each variable in each equation

yt =
gx1

�0+
gx1

�1
gxg

yt�1+
gx1

�2
gxg

yt�2+
gx1

. . .
�k
gxg

yt�k+
gx1

µ1t

gx1
(3)

We can also extend this to the case where the model includes
first di↵erence terms and cointegration relations (VECM,
vector error corrections models, that we will see later in the
course).
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Notation and Concepts
Vector autoregressive models compared with structural equations models

Vector autoregressive models - VAR

VAR models explain endogenous variables only by their own
history, in addition to deterministic regressors.

In contrast, structural VAR models (hereinafter SVAR, for
Structural VAR) allow explicit modeling of contemporary
interdependence between left-sided variables.

This type of model tries to circumvent the shortcomings of
VAR models.
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Notation and Concepts
Vector autoregressive models compared with structural equations models

Advantages of the VAR Model

It is not necessary to specify which variables are

endogenous or exogenous - they are all endogenous.

It allows the value of a variable to depend on more than its
own lags or combinations of white noise terms, so they are
more general than our well-known ARIMA model.

As long as we don’t have contemporary terms on the right side
of the equations, we can use OLS separately in each equation.
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Notation and Concepts
Vector autoregressive models compared with structural equations models

Disadvantages of the VAR Model

VAR models are atheoretical (as are ARIMA models).

How do you decide the length of the appropriate lag?

There are so many parameters!
If we have g equations for the g variables, and we have k lags
of each of the variables in each equation, we have to estimate
(g + kg

2)parameters. For example, if g = 3, and k = 3, we
will have 30 parameters!!!

We have to ensure that all components of the VAR model are
stationary?

Marcelo Villena, PhD Lecture IV.- Vector Autoregressive Models



Introduction
Choosing the optimal lag length for a VAR

Stability of VAR processes
On Causality
Homework 4
References

Notation and Concepts
Vector autoregressive models compared with structural equations models

Why VAR?

VARs are useful in several contexts:

1 forecasting a collection of related variables where no explicit
interpretation is required;

2 testing whether one variable is useful in forecasting another
(the basis of Granger causality tests);

3 impulse response analysis, where the response of one variable
to a sudden but temporary change in another variable is
analysed;

4 forecast error variance decomposition, where the proportion of
the forecast variance of each variable is attributed to the
e↵ects of the other variables.
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Practical Example

Choosing the optimal lag length for a VAR

There are two possible approaches: i) cross-equation
constraints, and ii) information criteria

Cross-equation constraints

In the spirit of (unconstrained) VAR modeling, each equation
must have the same lag length.

Suppose a bivariate VAR(8) was estimated using quarterly
data with 8 lags for the two variables in each equation, and
we want to examine the constraint that the coe�cients of lags
5 to 8 are jointly zero.

This can be done using a likelihood ratio test.
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Practical Example

Choosing the optimal lag length for a VAR

We denote the variance-covariance matrix of the residuals
(given by µ̂µ̂0/T ), as

P̂
.

The likelihood ratio test of this joint hypothesis is given by:

LR = T

"
log |

X̂

r

|� log |
X̂

u

|
#

where
P̂

r is the variance-covariance matrix of the residuals for

the restricted model (with 4 lags),
P̂

u is the
variance-covariance matrix of the residuals for the unrestricted
VAR model (with 8 lags), and T is the sample size.

The test statistic is distributed asymptotically as a �2 with
degrees of freedom equal to the total number of constraints.
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Practical Example

Choosing the optimal lag length for a VAR

In the case of the previous VAR, we are restricting 4 lags of
two variables in each of the two equations, a total of
4 ⇤ 2 ⇤ 2 = 16 constraints.

In the general case where we have a VAR with p equations,
and we want to impose the restriction that the last lags have
zero coe�cients, there would be a total of p2q restrictions.

Disadvantages: The performance of the LR test is
complicated and requires an assumption of normality of
disturbances.
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Practical Example

Choosing the optimal lag length for a VAR

Information Criteria for VAR Lag Selection

Multivariate versions of the information criteria are required. These
can be defined as:

Akaike information criterion

MAIC = ln|
X

|+ 2k 0/T

Bayesian or Schwarz criterion

MSBIC = ln|
X

|+ k
0/Tln(T )

MHQIC = ln|
X

|+ 2k/Tln(ln(T ))

where all notation holds and k is the total number of regressors in
all equations, which will be equal to g2k + g for the g equations,
each with k delays for the variable g , plus a constant term in each
equation. The values of the information criteria are constructed for
0, 1, ... delays (up to some pre-specified maximum of k).
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Practical Example

Example of a VAR model in R

Lütkepohl & Krätzig (2004) used the following series:
labor productivity (prod) defined as the logarithmic di↵erence
between GDP and employment,
the logarithm of employment (e),
the unemployment rate (U) and
real wages (rw), defined as the logarithm of the real wage
index.
Data was obtained from the OECD database, and cover the
first quarter of 1980 to the fourth quarter of 2004.
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Practical Example

Example of a VAR model in R

R Code

rm(list=ls())
install.packages(“vars”)
library(“vars”)
data(“Canada”)
summary(Canada)
plot(Canada, nc = 2, xlab =“”)
adf2 < − summary(ur.df(Canada[, “prod”], type =“drift”, lags =
1))
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Practical Example

Example of a VAR model in R

Marcelo Villena, PhD Lecture IV.- Vector Autoregressive Models



Introduction
Choosing the optimal lag length for a VAR

Stability of VAR processes
On Causality
Homework 4
References

Practical Example

Example of a VAR model in R
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Example of a VAR model in R
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Practical Example

Example of a VAR model in R

R Code

VARselect(Canada, lag.max = 8, type =“both”)
Canada < − Canada[, c(“prod”, “e”, “U”,“rw”)]
p1ct < − VAR(Canada, p = 1, type =“both”)
p1ct
summary(p1ct, equation =“e”)
plot(p1ct, names =“e”)
ser11 < − serial.test(p1ct, lags.pt = 16, type =“PT.asymptotic”)
ser11$serial
norm1 < − normality.test(p1ct)
norm1$jb.mul p
rd < − predict(plct, n.ahead = 10, ci = 0.95, dumvar = NULL)
print(prd)
plot(prd, “single”)
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Example of a VAR model in R
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Marcelo Villena, PhD Lecture IV.- Vector Autoregressive Models



Introduction
Choosing the optimal lag length for a VAR

Stability of VAR processes
On Causality
Homework 4
References

Practical Example

Example of a VAR model in R
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Example of a VAR model in R

Marcelo Villena, PhD Lecture IV.- Vector Autoregressive Models



Introduction
Choosing the optimal lag length for a VAR

Stability of VAR processes
On Causality
Homework 4
References

Practical Example

Example of a VAR model in R
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Example of a VAR model in R
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Primitive versus Standard Form of VARs
Conditions for stability

Primitive versus Standard Form of VARs

Does the VAR model include contemporaneous terms?

So far, we have assumed that the VAR model is of the form:

y1t = �10 + �11y1t�1 + ↵11y2t�1 + µ1t

y2t = �20 + �21y2t�1 + ↵21y1t�1 + µ2t

But what if the equations had a contemporaneous feedback
term?

y1t = �10 + �11y1t�1 + ↵11y2t�1 + ↵12y2t + µ1t

y2t = �20 + �21y2t�1 + ↵21y1t�1 + ↵22y1t + µ2t

Marcelo Villena, PhD Lecture IV.- Vector Autoregressive Models



Introduction
Choosing the optimal lag length for a VAR

Stability of VAR processes
On Causality
Homework 4
References

Primitive versus Standard Form of VARs
Conditions for stability

Primitive versus Standard Form of VARs

We can write this as:
✓
y1t

y2t

◆
=

✓
�10
�20

◆
+

✓
�11 ↵11

↵21 �21

◆✓
y1t�1

y2t�1

◆
+

✓
↵12 0
0 ↵22

◆✓
y1t�1

y2t�1

◆
+

✓
µ1t

µ2t

◆

This VAR is in its primitive form. . . .
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Primitive versus Standard Form of VARs
Conditions for stability

Primitive versus Standard Form of VARs

We can take the contemporary LHS terms (left-hand side)
and write:

✓
1 �↵12

�↵22 1

◆✓
y1t

y2t

◆
=

✓
�10
�20

◆
+

✓
�11 ↵11

↵21 �21

◆✓
y1t�1

y2t�1

◆
+

✓
µ1t

µ2t

◆

or
Byt = �0 + �1yt�1 + µt

We can then multiply both sides by B
�1 and obtain:

yt = B
�1�0 + B

�1�1yt�1 + B
�1µt

or
yt = A0 + A1yt�1 + et

This is known as a VAR in its Standard Form, and can be
estimated by OLS.
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Primitive versus Standard Form of VARs
Conditions for stability

Stability of VAR processes

An important characteristic of a VAR(p) process is its stability.

This means that it generates stationary time series with time
invariant means, variances and covariances, given su�cient
initial values. One can verify this by evaluating the
characteristic polynomial:

det(IK � A1z � . . . � Apz
p) = 0.

For |z |  1.

If the solution of the above equation has a root for z = 1,
then some or all of the variables in the VAR(p) process are
integrated of order one, i.e., I (1).
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Primitive versus Standard Form of VARs
Conditions for stability

Stability of VAR processes

In practice, the stability of an empirical VAR (p) process can
be analyzed by considering the complementary form and
calculating the eigenvalues of the coe�cient matrix.
A VAR (p) process can be written as a VAR (1) process:

⇠t = A⇠t�1 + ⌫t

⇠t =

2

64
yt
...

yt�p+1

3

75 ,A =

2

666664

A1 A2 . . . Ap�1 Ap

I 0 . . . 0 0
0 I . . . 0 0
...

...
. . .

...
...

0 0 . . . I 0

3

777775
, ⌫t =

0

BBB@

µt

0
...
0

1

CCCA

The dimensions of vectors ⇠t and ⌫t are (KP ⇥ 1) and the
dimension of the matrix A is (Kp × Kp). Again, if the
eigenvalue modules of A are less than one, then the VAR (p)
process is stable.Marcelo Villena, PhD Lecture IV.- Vector Autoregressive Models
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Impulse response functions (IRF)

Impulse response functions (IRF)

Given a sample of endogenous variables y1, . . . , yT , and
su�cient prior sample valuesy�p+1, . . . , y0, the coe�cients of
a VAR(p) process can be estimated e�ciently by means of
least squares applied separately to each of the equations.

Once a VAR(p) model has been estimated, the avenue is open
for further analysis.

A researcher might/should be interested in diagnostic tests,
such as tests of autocorrelation, heteroscedasticity or
non-normality in the error term.

However, he might be more interested in causal inference,
forecasting the dynamic behavior of the empirical model, i.e.
impulse response functions (IRF) and forecast error variance
decomposition (FEVD).
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Impulse response functions (IRF)

The impulse response functions (IRF) and the forecast
error variance decomposition (FEVD) are based on Wold’s
moving average decomposition for stable VAR (p) processes
which is defined as:.

yt = �0ut + �1ut�1 + �2ut�2 + . . .

�0 = IK and �s can be calculated recursively according to:

�s =
sX

j=1

�s�jAj

for s = 1, 2, . . . where Aj = 0 for j > p.
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Impulse response functions (IRF)

Impulse response functions (IRF)

Finally, the predictions for horizons h  1 of an empirical
process VAR (p) can be generated recursively according to:

yT+h|T = A1yT+h�1|T + . . . + ApyT+h�p|T

where yT+j |T = yT+j for j  0.
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Impulse response functions (IRF)

The forecast error covariance matrix is given as:

Cov

2

64
yT+1 � yT+1|T

...
yT+h � yT+h|T

3

75 =

2

6664

I 0 . . . 0
�1 I . . . 0
...

...
. . . 0

�h�1 �h�2 . . . I

3

7775
(
X

u

⌦Ih)

2

6664

I 0 . . . 0
�1 I . . . 0
...

...
. . . 0

�h�1 �h�2 . . . I

3

7775

T

and matrices �i are the empirical coe�cient matrices of the Wold moving
average representation of a stable VAR(p) process as shown above. The
operator ⌦ is the Kronecker product.
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Example of Impulse response functions (IRF)

VAR models are often di�cult to interpret.

Solutions to this problem are the construction of impulse
response functions and variance decompositions.

Impulse response functions show the responsiveness of the
dependent variables in the VAR to shocks to the error term.

A unit shock is applied to each variable and its e↵ects are
stored.
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Example of Impulse response functions (IRF)

Consider, for example, a simple bivariate VAR(1):

y1t = �10 + �11y1t�1 + ↵11y2t�1 + µ1t

y2t = �20 + �21y2t�1 + ↵21y1t�1 + µ2t

Initially, at t = 1 we assume a shock in the t´error term µ11

of the first equation.
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Impulse response functions (IRF)

Example of Impulse response functions (IRF)

This shock has a direct e↵ect on y11, of exactly the same
amount.

Considering that y21 is not yet e↵ected, and assuming that
µ21 = 0 with t = 1, ....T .

In the second period (t = 2), the original impact still has an
e↵ect on the lagged value of y1.

The e↵ect on y12, is �11µ11, and the e↵ect on y22, is �21µ11.
In the third period, the e↵ect on y13, is not only �11(�11µ11),
but also´en �12(�21µ11). Consequently, the e↵ect on y23 is
�21(�21µ11) + �22(�21µ11).
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Impulse response functions (IRF)

Example of Impulse response functions (IRF)

Example Orthogonal Impulse Responses

In the above impulse response model, we assume that the
error terms of the di↵erent equation are uncorrelated.

However, this assumption is rather implausible. A hypothetical
shock in a single equation does not respond to a realistic
fitting process. To control the correlation between the error
terms, we have to use orthogonal impulse response sequences.
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Example of Impulse response functions (IRF)

Example Orthogonal Impulse Responses

The idea is to modify the original moving average construction
so that the residuals are uncorrelated, i.e., the residuals must
be orthogonal to each other. Therefore, we can write:

yt =
1X

k=1

Ĉk⌫t�k

where Ĉk = CkG and G is a transformation matrix with the
property GGI (Cholesky decomposition).
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Example of Impulse response functions (IRF)

The error terms of the modified system are as follows
⌫t�k = G � 1µt�k . The variance-covariance matrix of µt�k is
diagonal, according to the properties of G .

However, the matrix G is not clearly defined by the Cholesky
decomposition (⌦ = G � 1G 0 � 1, where ⌦ is the original
variance-covariance matrix). In addition, we have to specify
the order of the variables.

The chosen order assumes the causal relationship between the
variables. The impulse response results may depend

strongly on the order of the variables, especially when

they are highly correlated.
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Variance decompositions

Variance decompositions also allow us to examine the
dynamics of VAR models.

They provide the proportion of the movements in the
dependent variables that are due to their ”own”shocks, versus
the shocks of other variables.

The variance decomposition gives information about the
relative importance of each variable shock in the VAR.
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Example of Impulse response functions (IRF)

However, in general, this is not true.

The error terms would always be correlated to some degree.

The dynamic fit of the reciprocal dependence is not
immediately considerable.

The impulse response test shows the e↵ects of an exogenous
shock on the whole process over time.

Therefore, one can detect the dynamic relationships over time.
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The impulse response function and variance
decompositions:

The ordering of the variables.

Therefore, the notion of examining the e↵ect of innovations
separately has little meaning, since they have a common
component.

What is done is to ”orthogonalize” the innovations.

Initially, look at the adjustment of the endogenous variables
over time, after a hypothetical shock at t.

This adjustment is compared with the process of
orthogonalization. This adjustment is compared to the time
series process without a shock, i.e., the real process.
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The impulse response function and variance
decompositions:

The ordering of the variables.

The impulse response sequences plot the di↵erence between
these two time paths. In the bivariate VAR, this problem can
be addressed by assigning the entire e↵ect of the common
component to the first of the two variables in the VAR.

In the general case where there are more variables, the
situation is more complex, but the interpretation is the same.
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Example of Impulse response functions (IRF)

R Code

var.irf < − irf(p1ct, response =“U”, n.ahead = 10, boot = TRUE)
plot(var.irf )
var.irf1 < − irf(p1ct, impulse =“e”, response =“U”, n.ahead = 10,
boot = TRUE)
plot(var.irf1)
fevd.U < − fevd(p1ct, n.ahead = 48)$U
summary(fevd.U)
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Example of Impulse response functions (IRF)

This shock has a direct e↵ect on y11, of exactly the same
amount.

Considering that y21 is not yet e↵ected, and assuming that
µ21 = 0 with t = 1, ....T .

In the second period (t = 2), the original impact still has an
e↵ect on the lagged value of y1.

The e↵ect on y12, is �11µ11, and the e↵ect on y22, is �21µ11.
In the third period, the e↵ect on y13, is not only �11(�11µ11),
but also´en �12(�21µ11). Consequently, the e↵ect on y23 is
�21(�21µ11) + �22(�21µ11).
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Significance of a Block and Causality Test

We might be interested in testing the following hypotheses,
and their implicit constraints on the parameter matrices:

Hypothesis Implied Restriction
1. Lags of y1t do not explain current y2t β21 = 0 and γ21 = 0 and δ21 = 0
2. Lags of y1t do not explain current y1t β11 = 0 and γ11 = 0 and δ11 = 0
3. Lags of y2t do not explain current y1t β12 = 0 and γ12 = 0 and δ12 = 0
4. Lags of y2t do not explain current y2t β22 = 0 and γ22 = 0 and δ22 = 0

Each of these four hypotheses is an F-test, since each set of
parameters is extracted from an equation. These tests can
also be called Granger Causality Tests.
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Significance of a Block and Causality Test

Granger causality tests attempt to answer questions such as
Do changes in y1 cause changes in y2?

If y1 causes y2, lags of y {1} should be significant in the
equation y2.

If this is the case, then y1 is said to ”Granger-cause”y2. If y2
causes y1, lags of y2 must be significant in the y1 equation.

If both sets of lags are significant, a ”bidirectional

causality relationship” exists.
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Example of a VAR model in R

R Code

var.cg < − VAR(Canada, p = 2, type =“const”)
causality(var.cg, cause =“e”)
grangertest(prod˜ e, order=4)
for (i in 1:4)
{
cat(”LAG =”, i)
print(causality(VAR(mydata, p = i, type =“const”), cause =
“e”)Granger )
}
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Example VAR Model - Granger Causality Test
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Summary

Advantages of the VAR model: a) it is relatively easy to
specify and estimate, b) variables can be non-stationary, c)
errors can be contemporaneously correlated.

Disadvantages of the VAR model: many parameters.

Thus, we have broaden our understanding of the relationship
between time series, allowing for the possibility of feedbacks
from idiosyncratic shocks.

This dynamics can be captured by means of a vector
autoregressive model (VAR), which is essentially a
generalization of the analysis of autoregressive processes, in
which, instead of considering a single variable, a vector of
variables is considered.
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Homework 4

Calibrate a VAR type model, and develop the following activities:
i) Find the unit root of each variable.
ii) Select the optimal lags of the model.
iii) Calibrate the model and interpret its results.
iv) Check the OLS estimation of the Standard Form.
v) Analyze the residuals and the stability of the model.
vi) Perform impulse analysis and variance decomposition.
vii) Perform out-of-sample forecasting using rolling windows.
viii) Compare the errors of your model, with the best model you
can develop (remember Homework 2 and 3).
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Introduction

If two or more non-stationary time series follow a common (or
equilibrium) path in the long run, we can speak of
cointegration. The classical test for cointegration boils down
to determining whether a linear combination of the series is
stationary or not. If, for example, two time series are
cointegrated by a common factor (cointegrating vector), it is
not possible to use a standard VAR approach. We have to
account for this relationship and use an error correction model
to obtain correct results.
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Cointegration

Suppose that Yt = I (1) and Xt = I (1). Then Yt and Xt are
cointegrated, CI (1, 1), if there exists a �, such that
Yt � �Xt = "t = I (0).

This implies that there is a long-run relationship between Yt

and Xt , i.e. they do not ”separate”over time. Hence the
relation, Yt = �Xt + "t , makes sense.

If Yt and Xt are not cointegrated, i.e., "t is also I (1), then Yt

and Xt will become increasingly separated over time, and
hence there will be no long-run relationship between these
variables. Any regression of Yt in Xt is ”Spurious”.
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Cointegration

In general, if Yt and Xt are both I (d), then Yt and Xt are
CI (d , b) if Yt � �Xt = "t = I (d � b), b > 0. If Yt and Xt are
cointegrated, this means that it is possible to model the
long-run relationship between Yt and Xt

This is an alternative modeling strategy to trend elimination
through di↵erencing. The trend elimination procedure in
general loses information.

Therefore, it is possible to apply a ”Seasonal Cointegration”
procedure rather than trying to eliminate the seasonal e↵ect
by di↵erencing.
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Engle-Granger Cointegration Test.

Estimate the cointegrated regression, Yt = �Xt + "t = I (0)
using OLS to obtain the residuals et. Apply the Dickey-Fuller
test (DF) and/or the Augmented Dickey-Fuller test (ADF) to
examine whether the residuals have unit roots.

If the hypothesis of unit roots is not rejected, this implies that
"t is I (1), which implies that Yt and Xt are NOT cointegrated.
It is important to note that the critical values for the DF and
ADF tests are not valid to be used for Cointegration. Engle
and Granger have calculated appropriate critical values.
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Error Correction Model

If Yt and Xt are cointegrated, then there is a long-run
relationship between these series and the short-run dynamics
of this relationship can be described by the error correction
model (ECM).

Long-term relationship:

Yt = �Xt + "t (1)
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Error Correction Model

The error correction model, i.e. the short term dynamics is
given by:

4Yt = ↵4 Xt + '[Yt�1 � �Xt�1] + "t (2)

where "t= white noise, i.e. I (0).

Interpretation: the current change in Yt consists of two
components:

(i) ↵4 Xt : the short-run response to the current changes in Xt ,
and
(ii) '[Yt�1 � �Xt�1]: the partial correction of the previous
deviation of Yt from its desired long-run level.
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Error Correction Model

The two-step Engle-Granger procedure.
(i) Estimate the Cointegration regression´´ to obtain an estimate
of the long-run parameter, and then,
(ii) Use the residuals to estimate the error correction model.
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Cointegration in practice

Example IPSA - CU - S&P

We will analyze the long-run relationship between the Chilean
stock market (IPSA), the US stock market (S&P 500), and
the price of copper (cu).

In particular, we will test the hypothesis of integration. First
we present the stationarity test for the three variables.

Marcelo Villena, PhD Lecture V.- Cointegration Analysis



Introduction

Cointegration

Homework

References

Engle-Granger Cointegration Test

Error Correction Model

Johansen Cointegration Test

ARDL Models

Cointegration in practice

R Code

library(tseries) # df, adf
library(dynlm) # time series regression
mydata< −read.csv (“cointegration.csv”)
ipsa< −ts(mydata$IPSA,frequency=12, start = c(2010,1))
cu< −ts(mydata$CU,frequency=12, start = c(2010,1))
sp< −ts(mydata$s.p,frequency=12, start = c(2010,1))
summary(mydata) adf.test(di↵(ipsa)); adf.test(di↵(sp));
adf.test(di↵(cu))

Marcelo Villena, PhD Lecture V.- Cointegration Analysis



Introduction

Cointegration

Homework

References

Engle-Granger Cointegration Test

Error Correction Model

Johansen Cointegration Test

ARDL Models

Cointegration in practice

Example IPSA - CU - S&P

Marcelo Villena, PhD Lecture V.- Cointegration Analysis



Introduction

Cointegration

Homework

References

Engle-Granger Cointegration Test

Error Correction Model

Johansen Cointegration Test

ARDL Models

Cointegration in practice

Example IPSA - CU - S&P

We now run the two-stage Engle-Granger cointegration model.
We first look for a long-run relationship of the variables, and
find that the IPSA and CU relationship is the strongest.
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Cointegration in practice

R Code

ipsa.reg1 < − dynlm(ipsa˜ cu + sp)
summary(ipsa.reg1)
ipsa.reg2 < − dynlm(ipsa˜ L(cu, 1:3))
summary(ipsa.reg2)
ipsa.reg3 < − dynlm(ipsa˜ cu)
summary(ipsa.reg3)
residuos < − ipsa.reg3[[“residuals”]]
plot(residuos);
adf.test(residuos); qqnorm(residuos); qqline(residuis)
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Example IPSA - CU - S&P

The ECM using a dynamic regression

R Code

ipsa.reg4 < − dynlm(di↵(ipsa)˜ di↵(cu) + lag(residuos))
summary(ipsa.reg4)

Marcelo Villena, PhD Lecture V.- Cointegration Analysis



Introduction

Cointegration

Homework

References

Engle-Granger Cointegration Test

Error Correction Model

Johansen Cointegration Test

ARDL Models

Cointegration in practice

Example IPSA - CU - S&P

Marcelo Villena, PhD Lecture V.- Cointegration Analysis



Introduction

Cointegration

Homework

References

Engle-Granger Cointegration Test

Error Correction Model

Johansen Cointegration Test

ARDL Models

Johansen Cointegration Test

Testing for and Estimating Cointegrating Systems Using

the Johansen Technique Based on VARs

The Johansen test, see Johansen(1988), is a cointegration test
that allows more than one cointegrating relationship, unlike
the Engle-Granger method.

There are two types of Johansen test, either trace or
eigenvalue, and the inferences may be slightly di↵erent.

This test is based on maximum likelihood estimation and two
statistics: maximum eigenvalues and a trace statistic. This is
related to the rank of the matrix. If the rank is zero, there is
no cointegration relationship. If the rank is one, there is one,
if two there are two and so on.
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Cointegration in a VAR: Vector Error-Correction Models

In our VAR analysis, we have assumed that the variables

in the model are stationary and ergodic.

On the other hand, we recently saw that variables that are
individually non-stationary can be cointegrated. For the
simple case of two variables and a cointegrating relationship,
we saw that an error-correction model is the appropriate
econometric specification.

In this model, the equation is di↵erentiated and an error
correction term is included, which measures the deviation of
the previous period from the long-run equilibrium.

We now consider how cointegrated variables can be used in a
VAR using a vector error correction model (VEC model).
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Cointegration in a VAR: Vector Error-Correction Models

In general, when variables are non stationary, a VAR
model in levels is not appropriate since it is a spurious
regression which is a non-interpretable regression.

However, although variables are non stationary but when

cointegrations exist, a VAR model in levels can be

estimated which has a long-term interpretation.

In other words, the cointegration indicates one or more
long-run equilibriums or stationary relationships among
non-stationary variables.

To determine whether VAR model in levels is possible or not,
we need to transform VAR model in levels to a VECM model
in di↵erences (with error correction terms), to which the
Johansen test for cointegration is applied.
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Cointegration in a VAR: Vector Error-Correction Models

A two-variable VEC model If two series I(1), say Yt and Xt ,
are cointegrated, then there exists a unique ↵0 and ↵1 such
that ⌫t = yt � ↵0 � ↵1xt is I(0). In the one-equation
cointegration model, we saw that the error correction model:,
had the following form.

4yt = �0 + �1 4 xt + �⌫t�1 + "t =
�0 + �1 4 xt + �(yt�1 � ↵0 � ↵1xt�1) + "t

(3)
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Cointegration in a VAR: Vector Error-Correction Models

All terms in the above equation are I (0), provided that the
coe�cients ↵ (the ”cointegration vector”) are known or at
least consistently estimated.

The terminus ⌫t�1 is the magnitude by which y was above or
below its long-run equilibrium value in the previous period.

The coe�cient � (which we expect to be negative) represents
the amount of ”correction” of this period, (t � 1),
disequilibrium occurring in period t.
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Johansen Cointegration Test

R Code

install.packages(“urca”)
library(urca)
data ipsa< −data.frame(ipsa,cu)
cointegration < − ca.jo(data ipsa, type=“trace”, ecdet=“trend”,
spec=“transitory”)
summary(cointegration)
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Cointegration in a VAR: Vector Error-Correction Models

The expected sign of �x depends on the sign of ↵1.

We expect � 4 xt/�xt�1 = ��x↵1 < 0 for the same reason
that we expect � 4 yt/�yt�1 = �y < 0 : if xt�1 is above its
long-run ratio to y , then we expect 4xt to be negative, other
things constant.
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Cointegration in a VAR: Vector Error-Correction Models

A simple and concrete example may help to clarify the role of
error correction terms in a VEC model.

Suppose that the long-run cointegration relationship is
yt = xt , so that ↵0 = 0 and ↵1 = 1

The error correction term between parentesis in each equation
of the VAR system is now yt�1 � xt�1, the di↵erence between
y and x in the previous period.

Suppose that due to previous shocks, yt�1 = xt�1 + 1 or that
y is above its long-run equilibrium relation with x by one unit
(or, equivalently, x is below its long-run equilibrium relation
with y by one unit).
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Cointegration in a VAR: Vector Error-Correction Models

To move toward long-run equilibrium at period t, we expect
(if there are no other changes) 4yt < 0 and 4xt > 0.

4yt changes in response to this equilibrium by
�y (yt�1 � xt�1) = �y , for a stable adjustment to occur,
�y < 0; y is too high, so it must decrease in response to the
disequilibrium.

The corresponding change in�x(yt�1 � xt�1) = �x .

Since x is ”too low,”the stable fit requires that the response in
x be positive, so we need �x > 0.

Note that if the long-run relationship between y and x were
inverse (↵1 < 0), then x would need´ıa decrease to move
toward equilibrium and we would need´ın �x < 0.

The expected sign on �x depends on the sign of ↵1.
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Engle-Granger Cointegration Test

Error Correction Model

Johansen Cointegration Test

ARDL Models

Cointegration in preactice

Example IPSA - CU - S&P

The ECM using dynamic regression

R Code

library(tsDyn)
data ipsa< −data.frame(ipsa,cu)
#Fit a VECM with Engle-Granger 2OLS estimator:
vecm.eg< −VECM(data ipsa, lag=2)
#Fit a VECM with Johansen MLE estimator:
vecm.jo< −VECM(data ipsa, lag=2, estim=“ML”)

Marcelo Villena, PhD Lecture V.- Cointegration Analysis



Introduction

Cointegration

Homework

References

Engle-Granger Cointegration Test

Error Correction Model

Johansen Cointegration Test

ARDL Models

Cointegration in practice

Example IPSA - CU - S&P

Marcelo Villena, PhD Lecture V.- Cointegration Analysis



Introduction

Cointegration

Homework

References

Engle-Granger Cointegration Test

Error Correction Model

Johansen Cointegration Test

ARDL Models

Cointegration in practice

Example IPSA - CU - S&P

Marcelo Villena, PhD Lecture V.- Cointegration Analysis



Introduction

Cointegration

Homework

References

Engle-Granger Cointegration Test

Error Correction Model

Johansen Cointegration Test

ARDL Models

Cointegration with ARDL Models

The ARDL cointegration technique, see Pesran et al (2001),
does not require prior tests for unit roots unlike other
methods.

Consequently, the ARDL cointegration technique is preferable
when dealing with variables that are integrated with di↵erent
order, I (0), I (1) or a combination of the two.

The long-run relationship of the underlying variables is
detected through the F-statistic (Wald test). In this approach,
the long-run relationship of the series is established when the
Fstatistic exceeds the critical value band.

The great advantage of this approach lies in its identification
of cointegrating vectors where there are multiple cointegrating
vectors.
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Engle-Granger Cointegration Test

Error Correction Model

Johansen Cointegration Test

ARDL Models

Cointegration in preactice

Example IPSA - CU - S&P

R Code

ipsa.reg4 < − auto.ardl(ipsa˜ cu)
ipsa.reg4 < − ardl(ipsa˜ cu)
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Homework V

Using the data from your previous task.

1 Test your hypotheses in light of Johansson’s cointegration
model.

2 Demonstrate the consistency of your previous results using the
Engle-Granger Cointegration Test.

3 Calibrate and comment on the results of an ARDL model.

4 Discuss the advantages and disadvantages of the VAR model
and the di↵erent cointegration models.
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An excursion into the non-linear world

Rationale: Structural linear (and time series) models cannot
explain a number of important features common to many
financial data.

1 Leptokurtosis

2 Volatility clustering or volatility pooling

3 Leverage e↵ects
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Example of a financial series
Chilean Stock Exchange

R code
rm(list=ls())
getSymbols(”ECH”, from=”2020-01-01”)
Returns = di↵(log(Ad(ECH)))
Returns[as.character(head(index(Ad(ECH)),1))] = 0
adf.test(Ad(ECH))
adf.test(Returns)
plot(ECH)
plot(Returns)
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Daily prices ECH - IGPA
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Daily returns ECH - IGPA

Marcelo Villena, PhD GARCH Models



Non-linear models

ARCH Models

GARCH models

Homework

References

An excursion into the non-linear world

Our ”traditional” structural model could be something like:

Yt = �1 + �2X2t + �2X2t + . . . + �kXkt + µt (1)

where µt = white noise, i.e. µt v N(0,�2).

[?] define a non-linear data generation process as one that can be
written as:

Yt = f (µt , µt�1, µt�2, . . . ) (2)

where µt is a random error term (iid, Independent and identically
distributed random variable) and f is a nonlinear function.
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An excursion into the non-linear world

A more specific definition is:

Yt = g(µt�1, µt�2, . . . ) + µt�
2(µt�1, µt�2, . . . ) (3)

where g is a function of past error terms only, and �2 is a variance
term.

Models with nonlinear g(·) are ”nonlinear in mean”, while those
nonlinear in �2(·) are ”nonlinear in variance”.
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Types of nonlinear models

The linear paradigm is very useful. Many seemingly nonlinear
relationships can be linearized, through an appropriate
transformation. On the other hand, many relationships in
finance are likely to be intrinsically nonlinear.

There are many types of nonlinear models, e.g..
ARCH / GARCH
Switching models
Bilinear models
Neural networks Models
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Tests for nonlinearity

The ”traditional” time series analysis tools (ACF, spectral
analysis, etc.) may not find evidence that we can use a linear
model, but the data may still be non-independent.

Portmanteau tests for nonlinear dependence have been
developed. The simplest is the Ramsey RESET, which takes
the form:

µ̂t = �0 + �1ŷ
2 + �2ŷ

3 + . . .�p�1ŷ
p + ⌫t (4)

One particular nonlinear model that has proven to be very
useful in finance is the ARCH model, developed by [?].
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Revisited Heteroscedasticity

As we saw above, an example of a structural model is:

Yt = �1 + �2X2t + �2X2t + . . . + �kXkt + µt (5)

where µt= white noise, i.e. µt v N(0,�2).

The assumption that the variance of the errors is constant is
known as homoscedasticity, i.e., i.e., the variance of the errors
is constant. as homocedasticity, i.e. Var(µt) = �2

What happens if the variance of the errors is not constant?

Heteroscedasticity

This implies that the standard error estimates could be wrong.

In practice, the variance of errors is NOT constant over time,
e.g. for financial data.

Marcelo Villena, PhD GARCH Models



Non-linear models

ARCH Models

GARCH models

Homework

References

Autoregressive conditional heteroskedasticity models:
ARCH models

Let us use a model that does not assume that the variance is
constant. Recall the definition of variance of µt .

�2

t = Var(µt |µt�1, µt�2, . . . ) = E ((µt � E (µt))
2|µt�1, µt�2, . . . )

(6)

We normally assume that E (µt) = 0, hence:

�2

t = Var(µt |µt�1, µt�2, . . . ) = E (µ2

t |µt�1, µt�2, . . . ) (7)

On what will the present value of the variance of the errors
depend?

On the square of the previous terms of error.
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Autoregressive conditional heteroskedasticity models:
ARCH models

This leads us to the model known as ARCH, ”autoregressive
conditionally heteroscedastic model”:

�2

t = ↵0 + ↵1µ
2

t�1 (8)

In particular, the above model represents an ARCH(1).
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Autoregressive conditional heteroskedasticity models:
ARCH models

The full model is:

Yt = �1 + �2X2t + �2X2t + . . . + �kXkt + µt , µt˜N(0,�2) (9)

where �2
t = ↵0 + ↵1µ2

t�1

We can easily extend this to the general case where the error
variance depends on q squared lags of error squared:

�2

t = ↵0 + ↵1µ
2

t�1 + ↵2µ
2

t�2 + . . . ++↵qµ
2

t�q (10)

This is an ARCH(q) model.
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Autoregressive conditional heteroskedasticity models:
ARCH models

Instead of calling the variance, �2
t in the literature it is usually

called ht , so the model is in short:

Yt = �1 + �2X2t + �2X2t + . . . + �kXkt + µt (11)

with µt v N(0,�2), and where :

ht = ↵0 + ↵1µ
2

t�1 + ↵2µ
2

t�2 + . . . ++↵qµ
2

t�q (12)
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Another way to represent ARCH Models

For example, consider an ARCH (1). Instead of the
representation above, we can write

Yt = �1 + �2X2t + �2X2t + . . . + �kXkt + µt (13)

with µt = ⌫t�t , and where

�t =
q
↵0 + ↵1µ2

t�1
(14)

The two forms represent di↵erent ways of expressing exactly
the same model. The first form is easier to understand, while
the second better represents the simulation of an ARCH
model.
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The ”ARCH e↵ect” test

[1] First, a linear regression is run, e.g.:

Yt = �1 + �2X2t + �2X2t + . . . + �kXkt + µt (15)

and the residuals are stored,
[2] Next́ the residuals are squared, and a regression is run on the q

eigen lags for the q-order ARCH test, i.e., run the regression:

µ̂2
t = �0 + �1 ˆµt�1

2 + �2 ˆµt�2
2 + . . . + �q ˆµt�q

2 + ⌫t (16)

[3] The test statistic is defined as TR2 (the number of observations
multiplied by the multiple correlation coe�cient) from the last
regression, and is distributed as a �2(q).
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The ”ARCH e↵ect” test

[4] The null and alternative hypotheses are:

H0 : �1 = 0y�2 = 0y�3 = 0y . . . �q = 0.

H1 : �1 6= 0y�2 6= 0y�3 6= 0y . . . �q 6= 0.

If the value of the statistical test is greater than the critical
value of the distribution�2(q), the null hypothesis is rejected.

Note that the ARCH test is also applied directly to the
profitability, rather than to the residuals in step 1 above.
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Main problems of ARCH models

How do we decide the best q?
The required value of q could be very large.

Non-negativity constraints may be violated.

When estimating an ARCH model, we require
↵i > 0 8i = 1, 2, ..., q (since the variance cannot be negative).

A natural extension of an ARCH(q) model, which avoids

some of these problems, is the GARCH model that we

will see below.
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Example of an ARCH model

R code
# ARCH
avg returns<-mean(Returns)
X <- Returns - avg returns
sqr X <- X*X plot(sqr X)
arch1 <- lm(sqr X˜lag(sqr X,1)+lag(sqr X,2))
summary(arch1)
arch2 <- lm(sqr X˜lag(sqr X,1))
summary(arch2)
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Example of an ARCH model
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Example of an ARCH model
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Example of an ARCH model
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Generalised ARCH - GARCH Models

Introduced by [?] lets the conditional variance be dependent
on its own lags. Thus, the variance equatioń is now:

�2

t = ↵0 + ↵1µ
2

t�1 + ��2

t�1 (17)

This is a GARCH (1,1), which is equivalent to an ARMA (1,1)
of the variance equation.

We could also write:

�2

t�1 = ↵0 + ↵1µ
2

t�2 + ��2

t�2 (18)

�2

t�2 = ↵0 + ↵1µ
2

t�3 + ��2

t�3 (19)
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Generalised ARCH - GARCH Models

Replacing (18) in (21):

�2

t = ↵0 + ↵1µ
2

t�1 + �(↵0 + ↵1µ
2

t�2 + ��2

t�2) (20)

�2

t = ↵0(1 + �) + ↵1µ
2

t�1(1 + �L) + ��2

t�1 (21)

If we keep replacing terms, the GARCH(1,1) model can be written
as an ARCH model of infinite order. Thus, we can extend
GARCH(1,1) to a GARCH(p, q):

�2

t = ↵0 +
qX

i=1

↵iµ
2

t�i +
pX

j=1

�j�
2

t�j (22)
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Generalised ARCH - GARCH Models

In general, a GARCH(1,1) model is su�cient to capture the
clustered volatility of the data.

�2

t = ↵0 + ↵1µ
2

t�1 + �1�
2

t�1 (23)

Why is a GARCH model better than an ARCH model?
More parsimonious - avoids overfitting
Less likely to violate non-negativity constraints
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The unconditional variance under the GARCH
specification.

By calculating the unconditional variance, we can estimate the
standard deviation we are looking for. In this way, we will
derive the unconditional variance from the ARCH and GARCH
models. In addition, a note on the daily scale variation is
presented.
ARCH Unconditional Variance

We assume a process that could be represented by an
econometric model, for example:

yt = µ+ ✏t (24)

with ✏t ⇠
�
0,�2

t

�
. We assume that the conditional variance

follows an ARCH (1) type model, i.e.:

�2

t = ↵0 + ↵1✏
2

t�1 (25)
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The unconditional variance under the GARCH
specification.

Using the unconditional expectation operator, we have:

E
�
�2

t

�
= �2

t

E (↵0) = ↵0

E
�
✏2t�1

�
= �2

t

We have then:

�2

t (1� ↵1) = ↵0 (26)

) �2

t =
↵0

1� ↵1

(27)
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The unconditional variance under the GARCH
specification.

If we generalize to an ARCH model (q), we obtain:

�2

t = ↵0 + ↵1✏
2

t�1 + ↵2✏
2

t�2 + · · ·+ ↵q✏
2

t�q

= ↵0 +
qX

k=1

↵k✏
2

t�k (28)

where:

E
�
✏2t�1

�
= E

�
✏2t�2

�
= · · · = E

�
✏2t�q

�
= �2

t
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The unconditional variance under the GARCH
specification.

then:

�2

t =
↵0

1� ↵1 � ↵2 � · · ·� ↵q

=
↵0

1�
Pq

k=1
↵k

(29)
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The unconditional variance under the GARCH
specification.

GARCH Unconditional Variance

Assume the same process given previously, but this time the
variance also depends on its own p lags:

�2

t = ↵0 + ↵1✏
2

t�1 + ↵2✏
2

t�2 + · · ·+ ↵q✏
2

t�q + �1�
2

t�1 + �2�
2

t�2 + · · ·+ �p�
2

t�p

= ↵0 +
qX

k=1

↵k✏
2

t�k +
pX

l=1

↵l�
2

t�l (30)

The above equation gives a GARCH (p, q) model. Using

E
�
�2

t�1

�
= E

�
�2

t�2

�
= · · · = E

�
�2
t�p

�
= �2

t
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The unconditional variance under the GARCH
specification.

GARCH Unconditional Variance

In this way we have:

�2

t =
↵0

1� ↵1 � ↵2 � · · ·� ↵q � �1 � �2 � · · ·� �p

=
↵0

1�
Pq

k=1
↵k �

Pp
l=1

�l
(31)
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The unconditional variance under the GARCH
specification.

Scaling Volatility

The calculation of volatility and scaling at di↵erent time
horizons is possible only in cases where changes in the log of
the asset price vt are independently and identically distributed
(iid).

vt = vt�1 + "t "t ⇠ (0,�2) (32)

Then 1 day of return is:

vt � vt�1 = "t

with standard deviation �.
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The unconditional variance under the GARCH
specification.

Similarly, the h-day return is:

vt � vt�h =
h�1X

i=0

"t�i (33)

with variance h�2 and standard deviation
p
h�2.

However, the returns on high-frequency financial assets are
clearly not iid ... but it is still a good approximation.
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ARCH / GARCH model estimation

Since the model is no longer of the linear form we are used to,
we cannot use OLS.

We use another technique known as maximum likelihood.

The method works by finding the most likely values of the
parameters, given the actual data.

More specifically, we construct a likelihood function and
maximize it.
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ARCH / GARCH model estimation

The steps to be followed in the estimation of an ARCH or
GARCH model are as follows:

[1] Specify the appropriate equations for the mean and variance,
for example, an AR (1) - GARCH (1,1):

yt = ↵+ �yt�1 + µt , µt ⇠ (0,�2) (34)

�2

t = ↵0 + ↵1µ
2

t�1 + �1�
2

t�1 (35)

[2] Specify the likelihood function to maximize:

L = �(T/2)log(2⇡)�(1/2)
TX

t=1

log(�2

t )�(1/2)
TX

t=1

(yt�↵��yt�1)/�
2

t

(36)
[3] The computer maximizes the function, and calculates the
parameters and their standard errors. standard errors. . .
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Extensions to the basic GARCH model.

The main problems of GARCH (p, q) models are:
Non-negativity constraints can be violated.
GARCH models cannot account for leverage e↵ects.

In this context, since the GARCH model was developed, a
large number of extensions and variants have been proposed.
Three of the most important examples are the GARCH-M,
EGARCH, and GJR models.

In fact, possible solutions to the two problems posed above
can be addressed by the exponential GARCH model
(EGARCH) or the GJR model, which propose asymmetric
GARCH models.
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GARCH - in Mean

Based on the classical risk-hedging problem, if we expect a
risk to be compensated by a higher return, why not let the
return of a given security be partially determined by its risk?

[?] suggested the ARCH-M specification:

Yt = µ+ ��t�1 + µt , µt ⇠ (0,�2) (37)

�2

t = ↵0 + ↵1µ
2

t�1 + �µ2

t�1 (38)

� can be interpreted as a kind of risk premium. It is possible
to combine all or some of these models together to obtain
more complex, hybrid models - for example, an
ARMA-EGARCH (1,1)-M type model.
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EGARCH Model

Suggested by [?].The variance equation is given by:

log(�2

t ) = !+ �log(�2

t�1) + �
µt�1q
�2

t�1

+↵

2

4 |µt�1|q
�2

t�1

�
r

2

⇡

3

5 (39)

Advantages of the model.

Since we model log(�2
t ), even if the par´ameters are negative,

�2
t will be positive. We can take into account the leverage

e↵ect: if the relationship between volatility and return is
negative, �, it will be negative.
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GJR Model

Due to [?]:

�2

t = ↵0 + ↵1µ
2

t�1 + ��2

t�1 + �µ2

t�1It�1 (40)

Where:

It�1 = 1 si µt�1 < 0

It�1 = 0 si µt�1 � 0

For a leverage e↵ect: � > 0.

We require ↵1 + � � 0 and ↵1 � 0 for nonnegativity.
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Multivariate GARCH Models

Multivariate GARCH models are used to estimate and forecast
covariances and correlations. The basic formulation is similar
to that of the GARCH model, but where variances, as well as
covariances, are allowed to vary over time.

There are 3 main classes of multivariate GARCH formulations,
which are widely used: VECH, diagonal VECH and BEKK.

Multivariate GARCH (MGARCH) models generalize univariate
GARCH models and allow us to incorporate relationships
between the volatility processes of several series. We want to
know, for example, how changes in the volatility of one stock
a↵ect the volatility of another stock. These relationships can
be parameterized in several ways.
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GARCH vs average return volatility

R code
fit.garch <- garch(Returns, trace=FALSE)
print(fit.garch)
coeftest(fit.garch)
sigmaGarch<-fit.garch[[”coef”]][[”a0”]]/(1-fit.garch[[”coef”]][[”a1”]]-
fit.garch[[”coef”]][[”b1”]])
sigmaAvg<-var(Returns)
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GARCH vs average return volatility

sigmaAvg = 0.0004834654
sigmaGarch = 0.0004823009
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GARCH vs average return volatility

R code
# Rolling windows
windowLength = 40
foreLength = length(Returns) - windowLength
sigmaAvgV <- vector(mode=”character”, length=foreLength)
sigmaGarchV <- vector(mode=”character”, length=foreLength)
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GARCH vs average return volatility

R code
for (d in 1:foreLength) {
ReturnsO↵set = Returns[(d):(windowLength+d)]
fit.garch <- garch(ReturnsO↵set, trace=FALSE)
sigmaGarch<-fit.garch[[”coef”]][[”a0”]]/(1-fit.garch[[”coef”]][[”a1”]]-
fit.garch[[”coef”]][[”b1”]])
sigmaAvg<-var(ReturnsO↵set) print(sigmaGarch);
print(sigmaAvg)
sigmaGarchV[d]<-sigmaGarch
sigmaAvgV[d]<-sigmaAvg }
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GARCH vs average return volatility

https://vlab.stern.nyu.edu/analysis/VOL.ECH:US-R.GARCH
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GARCH vs average return volatility

https://vlab.stern.nyu.edu/volatility/VOL.ECH:US-R.GARCH
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Homework VI

Choose a variable of your choice (e.g., exchange rate, interest rate,
stock index), and using monthly data, analyze its volatility.

1 Tests for nonlinearity

2 Test the ARCH e↵ect

3 Compare the GARCH with the Average return volatility

4 Compare di↵erent types of GARCH models

5 Comment on what has happened to the volatility of your
variable in the last few years.
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On Machine Learning (ML)

Machine learning (ML) is a field of study in artificial
intelligence concerned with the development and study of
statistical algorithms that can e↵ectively generalize and thus
perform tasks without explicit instructions. Recently,
generative artificial neural networks have been able to surpass
many previous approaches in performance.

ML is known in its application across business problems under
the name predictive analytics. Although not all machine
learning is statistically based, computational statistics is an
important source of the field’s methods.
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On Machine Learning (ML)

The mathematical foundations of ML are provided by
mathematical optimization (mathematical programming)
methods. Data mining is a related (parallel) field of study,
focusing on exploratory data analysis through unsupervised
learning.

Unsupervised learning in artificial intelligence is a type of
machine learning that learns from data without human
supervision. Unlike supervised learning, unsupervised machine
learning models are given unlabeled data and allowed to
discover patterns and insights without any explicit guidance or
instruction.
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Introduction to Neural Networks

A popular topic in modern data analysis is the neural network,
which can be classified as a semiparametric method.The
literature on neural networks is enormous, and their
application extends to many scientific fields with varying
degrees of success. [1] provide information on neural networks
from a statistical point of view.

First, we will focus on feed-forward neural networks in which
inputs are connected to one or more neurons, or nodes, in the
input layer, and these nodes are connected to other layers
until they reach the output layer.
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Introduction to Neural Networks

Neural networks are a machine learning framework, which
attempts to mimic the learning pattern of natural biological
neural networks.

Biological neural networks have interconnected neurons with
dendrites that receive inputs, and then, based on these inputs,
produce an output signal via an axon to another neuron.

We attempt to mimic this process through the use of
Artificial Neural Networks (ANN), which from now on we
will call neural networks. The process of creating a neural
network begins with the most basic form, a single perceptron.
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Introduction to Neural Networks

Subsequently, we will introduce the Support Vector

Machine (SVM). In machine learning, SVM are supervised
learning models using algorithms that allow to analyze the
data used for classification and regression analysis.

In particular, given a set of training examples, each marked as
belonging to one or the other of two categories, an SVM
training algorithm builds a model that assigns new data to
one of the two categories, converting it into a
non-probabilistic binary linear classifier.
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Introduction to Neural Networks

An SVM model is a representation of the data as points in
space, mapped in such a way that the examples of the
categories are divided by as wide a free space as possible.

Then, new data are mapped into that same space and are
predicted to belong to a category according to the side of the
space where they fall.
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Feed forward neural networks

We will develop an example of a simple feed-forward network
for univariate time series analysis with a hidden layer.

The input layer has two nodes, and the hidden layer has three.
The input nodes connect forward to each and every node in
the hidden layer, and these hidden nodes connect to the single
node in the output layer. We call the network a feed-forward
network.

More complicated neural networks, including those with
feedback connections, have proliferated, but feed-forward
networks are the most relevant to our study.
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Feed forward neural networks

A feed-forward neural network with a hidden layer for
univariate time series analysis.
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Feed forward neural networks

The perceptron receives inputs, multiplies them by some
weight and then passes them to an activation function to
produce an output. This is how, a neural network processes
information from one layer to the next via an ”activation
function”.
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Feed forward neural networks

Consider a feed-forward network with a hidden layer. The jth node
in the hidden layer is defined as:

hj = fj

0

@↵0j +
X

i!j

wi jxi

1

A (1)

where xi s the value of the i-th input node, fj(.) is an activation
function that is generally taken to be the logistic function:

fj(z) =
exp(z)

1 + exp(z)0

↵0j is called bias, i ! j means summing all input nodes feeding j ,
and wijare the weights.
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Feed forward neural networks

For illustrative purposes, the j-th node of the hidden layer of the
2-3-1 forward network in the figure is:

hj =
exp(↵0j + w1jx1 + w2jx2)

1 + ↵0j + w1jx1 + w2jx2)
, j = 1, 2, 3. (2)

For the output layer, the node is defined as:

o = fo

0

@↵0o +
X

j!o

wjohj

1

A (3)

where the activation function fo(.) is linear or a unit step function
(Heaviside function). If fo(.)is linear, then:

Marcelo Villena, PhD Lecture VII.- 8. Forecasting in the context of Machine learning



Introductio to Machine learning

Introduction to Neural Networks

Feed forward neural networks

Support Vector Machines (SVM)

Homework VII

References

Feed forward neural networks

o = ↵0o +
X

j!o

wjohj

where k is the number of nodes in the hidden layer. By a unit step
function, we mean fo(z) = 1 if z > 0 and fo(z) = 0 otherwise. A
neuron with a unit step function is called a threshold neuron, with
”1” indicating that the neuron sends its message. For example, the
output of the 2-3-1 network in the figure is:

o = ↵0o + w1oh1 + w2oh2 + w3oh3
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Feed forward neural networks

If the activation function is linear, we have:

o =

(
1, if ↵0o + w1oh1 + w2oh2 + w3oh3 > 0.

0, if ↵0o + w1oh1 + w2oh2 + w3oh3  0.

If fo(.) is a unit step function. By combining the layers, the output
of a feed-forward neural network can be written as:

o = f0

2

4↵0o +
X

j!o

wjo fj

0

@↵0j +
X

i!j

wijxi

1

A

3

5 (4)
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Feed forward neural networks

If one also allows direct connections from the input layer to the
output layer, then the network becomes:

o = f0

2

4↵0o +
X

i!o

↵ioxi +
X

j!o

wjo fj

0

@↵0j +
X

i!j

wijxi

1

A

3

5 (5)

the first sum is added to the input nodes. When the activation
function of the output layer is linear, the direct connections from
the input nodes to the output node represent a linear function
between the inputs and the output.
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Feed forward neural networks

Consequently, in this particular case, the model presented in eq. 5,
is a generalization of linear models. For the 2-3-1 network in our
figure, if the output activation function is linear, then equation 4
becomes:

o = ↵0o +
3X

j=1

wjohj

where hj is obtained from the equation 2.
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Feed forward neural networks

The network has 13 parameters. If we use the equation 5, the
network becomes:

o = ↵0o +
2X

i=1

↵ioxi +
3X

j=1

wjohj

where hj is obtained from the equation 2. The number of network
parameters increases to 15.
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Feed forward neural networks

We refer to the function in equation 4 or 5 as a
semiparametric function because its functional form is known,
but the number of nodes and their o↵sets and weights are
unknown.

The direct connections from the input layer to the output
layer in equation 5 means that the network can omit the
hidden layer. We refer to such a network as a hop layer
feed-forward network.

Marcelo Villena, PhD Lecture VII.- 8. Forecasting in the context of Machine learning



Introductio to Machine learning

Introduction to Neural Networks

Feed forward neural networks

Support Vector Machines (SVM)

Homework VII

References

Feed forward neural networks

Feed-forward networks are known as multilayer percentrons in
the neural network literature. They can approximate any
continuous function uniformly in compact sets by increasing
the number of nodes in the hidden layer, see [2], [3].

This property of neural networks is the universal
approximation property of multilayer percetrons.

In summary, feed-forward neural networks with a hidden

layer can be viewed as a way to parameterize a general

continuous nonlinear function.
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Training and Forecasting

The application of neural networks involves two steps.
The first step is to train the network (i.e., to construct a
network, including the determination of the number of nodes
and the estimation of their biases and weights).
The second step is inference, especially extra-sample
forecasting. By comparing the comparative result of each
forecast, the network that outperforms the others is selected
and defined as the best network for making inferences.
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Training and Forecasting

In a time series application, suppose that
{(rt , xt)|t = 1, ...,T} represent the data available for the
training of the network, where xt denotes the vector of inputs,
and rt is the series of interest (e.g., log-returns of an asset).

For a given network, suppose that ot is the output of the
network, with an input of xt ; see the model presented in
equation 5.

Training a neural network is equivalent to choosing its biases
and weights so as to minimize some fit criteria, e.g., the least
square of its error.

S2 =
TX

t=1

(rt � ot)
2
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Training and Forecasting

This is a nonlinear estimation problem that can be solved by
several iterative methods. To guarantee the smoothness of the
fitted function, some additional constraints can be added to
the minimization problem above.

In the neural network literature, the Back Propagation (BP)
learning algorithm is the most popular method for training a
network.

The BP method, introduced by [4], works backward starting
with the output layer, and uses a gradient rule to modify the
biases and weights iteratively. Once a feed-forward neural
network is constructed, it can be used to compute
out-of-sample forecasts.
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Training and Forecasting

In short, once we have the output, we can compare it to a
known series and adjust the weights as best we can (the
weights usually start with random initialization values).

We keep repeating this process until we have reached a
maximum number of iterations allowed, or an acceptable error
rate. To create a neural network, we simply start adding layers
of perceptrons, creating a multilayer perceptron model of a
neural network.

We will have an input layer that directly takes function inputs
and an output layer that creates the resulting outputs. The
intermediate layers are known as hidden layers because they
do not directly see the feature inputs or outputs.
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Data pre-processing

It is important to normalize the data before training a neural
network.

The neural network may have di�culty converging before the
maximum number of iterations allowed if the data is not
normalized.

There are many di↵erent methods for data normalization.
Generally, it is best to scale the data from 0 to 1, or from -1
to 1.
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Example 1

To illustrate the potential applications of neural networks in
finance, we will model the monthly returns, including
dividends, of the firm IBM from January 1926 to December
1999.

We divide the data into two subsamples. The first subsample,
consisting of returns from January 1926 to December 1997 for
864 observations, is used for modeling.
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Example 1

Using the model presented in equation 5, with three inputs
and two nodes in the hidden layer, we obtain a 3-2-1 network
for the series.

The three entries are rt�1, rt�2 y rt�3, and the biases and
weights are presented below:

rt = 3.22�1.81f1(rt�1)�2.28f2(rt�1)�0.09rt�1�0.05rt�2�0.12rt�3

where, rt�1 = (rt�1, rt�2, rt�3)
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Example 1

and the two logistic functions are:

f1(rt�1) =
exp(�8.34� 18.97rt�1 + 2.17rt�2 � 19.17rt�3)

1 + exp(�8.34� 18.97rt�1 + 2.17rt�2 � 19.17rt�3)

f2(rt�1) =
exp(39.25� 22.17rt�1 � 17.34rt�2 � 5.98rt�3)

1 + exp(39.25� 22.17rt�1 � 17.34rt�2 � 5.98rt�3)
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Example 1

The standard error of the residuals for the above model is
6.56. For comparison, he also constructed an AR model for
the data, resulting in the following model:

rt = 1.101 + 0.077rt�1 + at

with �a = 6.61

The residual standard error is slightly larger than that of the
feed-forward model.
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Example 1

The monthly IBM stock returns in 1998 and 1999 form the
second subsample and are used to evaluate the out-of-sample
prediction performance of the neural networks.

As a benchmark for comparison, we use the sample mean of rt
in the first subsample as the 1-step forecast for all monthly
returns in the second subsample. This is equivalent to
assuming that the monthly IBM stock price follows a random
walk with drift.

The mean square forecast error (MSE) of the benchmark
model is 91.85. For the AR (1) model, the MSE of the 1-step
ahead forecasts is 91.70. Therefore, the AR (1) model slightly
outperforms the benchmark. For the network, the MSE is
91.74.
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Example 2 - Forecasting the SP 500

In this example we will forecast the SP 500 using univariate
models. In particular, we will use a linear model, such as ARIMA,
and a non-linear one, a feed-forward neural network.

R code
library(neuralnet)
library(nnet)
library(forecast)
getSymbols(“SPY”, from =“2000-01-01”, to =“2017-12-01”, src =
“yahoo”, adjust = TRUE, periodicity =“monthly”)
Returns = di↵(log(Ad(SPY)))
Returns[as.character(head(index(Ad(SPY)),1))] = 0
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Example 2 - Forecasting the SP 500

nnetar (Neural Network Time Series Forecast) is a
feed-forward neural network that considers lagged y-values as
inputs, and a single hidden layer.

The inputs are for lags from 1 to p. Several networks are
fitted, each with random initial weights. The results are then
averaged when calculating the predictions.
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Example 2 - Forecasting the SP 500

The network is designed for single-step forecasting. The
multi-step forecasts are computed recursively. For
non-seasonal data, the fitted model is denoted as a NNAR (p,
k) model, where k is the number of hidden nodes.

This is analogous to an AR (p) model but with nonlinear

functions. For seasonal data, the fitted model is called a

NNAR (p, P, k) [m] model, which is analogous to an

ARIMA (p, 0,0) (P, 0,0) [m] model but with nonlinear

functions.
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Example 2 - Forecasting the SP 500

R code
train=Returns[1:209]
test=Returns[210:215]
nn < − nnetar(train)
fcast < − forecast(nn, h=length(test))
autoplot(fcast)
plot(fcast)
fcast
test
accuracy(fcast)
arimaModel < − auto.arima(train)
accuracy(arimaModel)
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Example 2 - Forecasting the SP 500
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Example 2 - Forecasting the SP 500

Clearly for the period 2000-2017 the autoregressive neural network
wins, considering the nonlinearities present.
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Support Vector Machines (SVM)

They were created by Boser, Guyon and Vapnik in 1992 [5].
The original formulation is motivated by the resolution of
classification problems, where the basic idea consists of
mapping the data from the original space to a higher
dimensional space through a nonlinear transformation chosen
a priori, and then constructing the optimal separation
hyperplane in the new space.
In this way, by solving a linear problem in the new space, we
have a nonlinear model in the original space.
Based on the same philosophy, the method was later extended
to regression and clustering problems. Since its creation, SVM
has attracted great theoretical attention, being applied with
great success to practical time series prediction problems of
di↵erent nature.
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Support Vector Machines (SVM)

Support Vector Regression (SVR) works on similar principles
as Support Vector Machine (SVM) classification.
One can say that SVR is the adapted form of SVM

when the dependent variable is numerical rather than

categorical.

A major benefit of using SVR is that it is a non-parametric
technique. Unlike OLS, whose results depend on
Gauss-Markov assumptions, the output model from SVR does
not depend on distributions of the underlying dependent and
independent variables. Instead the SVR technique depends on
kernel functions.
Another advantage of SVR is that it permits for construction
of a non-linear model without changing the explanatory
variables, helping in better interpretation of the resultant
model. Marcelo Villena, PhD Lecture VII.- 8. Forecasting in the context of Machine learning
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Support Vector Machines (SVM)

The basic idea behind SVR is not to care about the prediction
as long as the error (✏i) is less than certain value. This is

known as the principle of maximal margin.

This idea of maximal margin allows viewing SVR as a convex
optimization problem.

The regression can also be penalized using a cost parameter,
which becomes handy to avoid over-fit. SVR is a useful
technique provides the user with high flexibility in terms of
distribution of underlying variables, relationship between
independent and dependent variables and the control on the
penalty term.

Marcelo Villena, PhD Lecture VII.- 8. Forecasting in the context of Machine learning



Introductio to Machine learning

Introduction to Neural Networks

Feed forward neural networks

Support Vector Machines (SVM)

Homework VII

References

Support Vector Machines (SVM)

Among the main features of SVM are:
1 The possibility of solving a convex problem, without

entrapment in local optimums,
2 The representation of the solution based on a fraction of the

total available points (these points are called Support Vectors),
3 The ability to generalize to new data, because the SVM

algorithm is based on the principle of minimization of structural
risk proposed in Vapnik’s Statistical Learning Theory, and

4 The ability to model nonlinear phenomena by means of the
aforementioned transformation of the data from the original
space to a higher dimensional space, a space in which a linear
model is obtained that is equivalent to a linear model in the
original space.
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Support Vector Machines (SVM)

A kernel function is usually used to refer to the kernel trick, a
method of using a linear classifier to solve a nonlinear
problem. It entails transforming linearly inseparable data to
linearly separable ones.

Machine learning methods are widely applied to classification
and regression problems. The best-known kernel method

for regression is support vector regression (SVR), which
is based on the principles of statistical learning theory (Cortes
and Vapnik 1995).

Kernel methods convert linear algorithms for use on

nonlinear data by projecting the input data into a high

dimensional feature space in which a linear solution is

found.
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Model definitions - Kernel functions

A kernel is defined as a function. K , such that 8x , y"K

K (x , z) =< �(x)�(z) >

where X is the space of the input data (finite, generally Rn);
and � is a mapping function of the input data from X to a
higher dimensional space F, where < •, • > is the inner
product of F. It can be proved that K (x , z) is a kernel
function if and only if the matrix M = (K (xi , xj))ni ,j=1

is
positive semidefinite. Some of the most common kernels are:

Linear: K (x , x 0) =< x , x 0 >
Polinomial: K (x , x 0) = (< x , x 0 > +1)d

RBF: K (x , x 0) = exp(�||x � x 0||2/�2)
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Model Definitions - SVM Structure

The SVM model can be viewed as layers of nodes, where:
The first layer consists of n nodes, which correspond to the
input vector.
The second layer consists of N nodes, which is the nonlinear
transformation based on support vectors.
The third layer contains only 1 node, which is the prediction
Each layer is fully connected to the next one.
The nodes arriving at the output node are weighted by
constants, which are to be determined by the model, and then
summed.
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Model Definitions - SVM Structure

During the learning process, the first layer selects the bases
K (xi ;X ), i = 1, ...,N; within the set of possible bases, while
the second layer constructs a linear function in the new space,
which is equivalent to finding a non-linear model in the input
space.

The N selected bases are those induced by the points called
Support Vectors.
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Model definitions - Loss functions. The model sought is of
the form y = f (x) + e, where f (x) is a nonlinear function and
e the error. Then, one wishes to minimize the value of
yi � f (xi ) = e; for each i , and for this a p-loss function is
used. The most common ones are:
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SVM Regression Algorithm

The optimization problem that finds the model weights, using p
esensitive loss function is:
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SVM Regression Algorithm

Since there may be no solution to the above problem, it is usually
reformulated as:
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The problem is that there may be no solution, so it is
reformulated as: where C is a parameter pair to be fixed,
representing the trade-o↵ between model complexity and
accuracy, and the parameter pair e represents the range of
tolerance to errors in the model. This problem has a solution,
and it is also convex, so the optimization methods converge
well to the solution, and the dual approach is much simpler
than the primal problem. Once the weights w are found, then
our models are:
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Thus, for example, SVR tries to find a function f(x) where the
predicted values are at most 2 from the observed values yi, fitting
inside a tube of width 22.
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The Modeling and Solving Approach

The first part of the experiment is to train the dataset. The
data must be divided into training (80%) and testing (20%)
data.

To train the data, the package called caret (short for
classification and regression training) has been used. The
library provides a set of functions that attempt to streamline
the process for creating predictive models..
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Example 3 - SVR

R code
#Read Data
data=read.csv(”gtemp.csv”, header=T)
head(data)
Y<-data$gtem X<-data$time
#Scatter
Plot plot(data, main =”Scatter Plot”)
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Example 3 - SVR

R code
#Linear Model
model=lm(Y˜X,data) abline(model)
#Scatter Plot
plot(data, pch=16)
#Predict Y using Linear Model
predY <- predict(model, data)
#Overlay Predictions on Scatter Plot
points(X, predY, col = ”blue”, pch=16)
## Calulate Root Mean Square Error (RMSE)
RMSE<-sqrt(mean((Y - predY)ˆ2))
RMSE
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Example 3 - SVR

R code
library(e1071)
#Scatter Plot
plot(data)
#Regression with SVM
modelsvm=svm(Y˜X,data)
#Predict using SVM regression
predYsvm <- predict(modelsvm, data)
##Overlay SVM Predictions on Scatter Plot
points(X, predYsvm, col = ”red”, pch=16)
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Example 3 - SVR

R code
## Calculate parameters of the SVR Model
#Find value of W
W=t(modelsvm$coefs) %*% modelsvm$SV
#Find value of b
b=modelsvm$rho
## RMSE for SVR Model
#Calculate RMSE
RMSEsvm<-sqrt(mean((Y- predYsvm)ˆ2)) RMSEsvm
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Perform parameters tuning with k-fold cross validation

To determine the values of the tuning parameters, one
approach is to use a resampling to estimate how well the
model performs on the training set.

There are di↵erent types of resampling methods being k-fold
cross-validation one of the most common types. The process
must be repeated many times and the performance estimates
from each holdout set are averaged into a final overall
estimate of model e�cacy such that given the training set,
the algorithm produces a prediction function f(x)=F(xi).

For each parameter combination the model fitness is
estimated via resampling and the relationship between the
tuning parameters and the model performance is evaluated.
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Perform parameters tuning with k-fold cross validation

The selected model is the one with the best average
performance across the k folds. The procedure prevents
overfitting to a subset of the training data.

The caret package is used to perform the cross validation with
a radial basis function kernel applied for parameter tuning.

There are two tuning parameters: the radial basis function
scale parameter bandwidth, and the cost value associated with
support vectors.
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On overfitting

In mathematical modeling, overfitting is ”the production of

an analysis that corresponds too closely or exactly to a

particular set of data, and may therefore fail to fit to

additional data or predict future observations reliably”.

An overfitted model is a mathematical model that contains
more parameters than can be justified by the data. In a
mathematical sense, these parameters represent the degree of
a polynomial.

The essence of overfitting is to have unknowingly extracted
some of the residual variation (i.e., the noise) as if that
variation represented the underlying model structure.
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Example 3 - SVR

R code
## Optimising SVR Model and Selecting Best Model
#Tune the above SVM model
OptModelsvm=tune(svm,
Y˜X,data=data,ranges=list(elsilon=seq(0,1,0.1), cost=1:100))
print(OptModelsvm)
plot(OptModelsvm)
#Find out the best model
BstModel=OptModelsvm$best.model
#Predict Y using best model
PredYBst=predict(BstModel,data)
#Calculate RMSE of the best model
RMSEBst<-sqrt(mean((Y- PredYBst)ˆ2))
RMSEBst

Marcelo Villena, PhD Lecture VII.- 8. Forecasting in the context of Machine learning



Introductio to Machine learning

Introduction to Neural Networks

Feed forward neural networks

Support Vector Machines (SVM)

Homework VII

References

Example 3 - SVR

Marcelo Villena, PhD Lecture VII.- 8. Forecasting in the context of Machine learning



Introductio to Machine learning

Introduction to Neural Networks

Feed forward neural networks

Support Vector Machines (SVM)

Homework VII

References

Example 3 - SVR

R code
## Plotting SVR Model and Tuned Model in same plot
plot(data, pch=16)
points(X, predYsvm, col = ”blue”, pch=3)
points(X, PredYBst, col = ”red”, pch=4)
points(X, predYsvm, col = ”blue”, pch=3, type=”l”)
points(X, PredYBst, col = ”red”, pch=4, type=”l”)
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Homework VII

Test the predictive power (out-of-sample) of machine learning
models

Compare ANNs with univariate models seen previously for a
previous homework, e.g. forecasting commodity price.
Compare SVRs with ARDL and VAR models seen previously for
a previous homework, e.g. CAPM, Phillips Curve, Solow, etc.
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